NCERT Solution Class XI Mathematics Sets Question 8 (Ex Text Sol)

Question 8:

Show that for any sets A and B,

A = (A ∩ B) ∪ (A − B) and A ∪ (B − A) = (A∪ B)

Answer

To show: A = (A ∩ B) ∪ (A − B)

Let x ∈ A

We have to show that x ∈ (A ∩ B) ∪ (A − B)

Case I

x ∈ A ∩ B

Then, x ∈ (A ∩ B) ⊂ (A ∪ B) ∪ (A − B)

Case II

x ∉ A ∩ B

⇒ x ∉ A or x ∉ B

∴ x ∉ B [x ∉ A]

∴ x ∉ A − B ⊂ (A ∪ B) ∪ (A − B)

∴ A ⊂ (A ∩ B) ∪ (A − B) … (1)

It is clear that

A ∩ B ⊂ A and (A − B) ⊂ A

∴ (A ∩ B) ∪ (A − B) ⊂ A … (2)

From (1) and (2), we obtain 

A = (A ∩ B) ∪ (A − B)

To prove: A ∪ (B − A) ⊂ A ∪ B

Let x ∈ A ∪ (B − A)

⇒ x ∈ A or x ∈ (B − A)

⇒ x ∈ A or (x ∈ B and x ∉ A)

⇒ (x ∈ A or x ∈ B) and (x ∈ A or x ∉ A)

⇒ x ∈ (A ∪ B)

∴ A ∪ (B − A) ⊂ (A ∪ B) … (3)

Next, we show that (A ∪ B) ⊂ A ∪ (B − A).

Let y ∈ A ∪ B

⇒ y ∈ A or y ∈ B

⇒ (y ∈ A or y ∈ B) and (y ∈ A or y ∉ A)

⇒ y ∈ A or (y ∈ B and y ∉ A)

⇒ y ∈ A ∪ (B − A)

∴ A ∪ B ⊂ A ∪ (B − A) … (4)

Hence, from (3) and (4), we obtain A ∪ (B − A) = A ∪B.

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur