Question 2:
For any two complex numbers z1 and z2, prove that
Re (z1z2) = Re z1 Re z2 – Im z1 Im z2
Answer
Let z1 = x1 + iy1 and z2 = x2 + iy2
∴ z1z2 = (x1 + iy1)(x2 + iy2)
= x1(x2 + iy2) + iy1(x2 + iy2)
= x1x2 +ix1y2 + iy1x2 + i2y1y2
= x1x2 + ix1y2 + iy1x2 + i2y1y2
= x1x2 + ix1y2 + iy1x2 – y1y2 [i2 = −1]
= (x1x2 – y1y2) + i(x1y2 + y1x2)
⇒ Re(z1z2) = x1x2 – y1y2
⇒ Re(z1z2) = Rez1 Rez2 – Imz1 Imz2
Hence, proved.
Latest Govt Job & Exam Updates: