Question 16:
Answer
(x + iy)3 = u + iv
⇒ x3 + (iy)3 + 3 ∙ x ∙ iy(x + iy) = u + iv
⇒ x3 + i3y3 + 3x2yi + 3xy2i2 = u + iv
⇒ x3 – iy3 + 3x2yi− 3xy2 = u + iv
⇒ (x3 – 3xy2) + i(3x2y – y3) = u + iv
On equating real and imaginary parts, we obtain
u = x3 – 3xy2, v = 3x2y – y3
Latest Govt Job & Exam Updates: