Question 19:
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Answer
(a + ib) (c + id) (e + if) (g + ih) =A + IB’
∴ |(a + ib) (c + id) (e + if) (g + ih)| = |A + iB|
⇒ |(a + ib) ×|(c + id)| × |(e + if | × |(g + ih)| = |A + iB| [|z1z2| = |z1||z2|]
On squaring both sides, we obtain
(a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2
Hence, proved.
Latest Govt Job & Exam Updates: