NCERT Solution Class XI Mathematics Trigonometric Functions Question 2 (Mis Sol)

Question 2:

Prove that: (sin 3x + sin x) sin x + (cos 3x − cos x) cos x = 0

Answer

L.H.S.  = (sin 3x + sin x) sin x + (cos 3x − cos x) cos x = 0

=sin 3x sin x + sin2 x + cos 3x cos x – cos2 x

=cos 3x cos x + sin 3x sin x – (cos2x – sin2 x)

= cos(3x – x) – cos 2x             [cos(A – B) = cos A cos B + sin A sin B]

=cos 2x – cos 2x

= 0

= R.H.S.

NCERT Solution Class XI Mathematics Trigonometric Functions Question 8 (Ex 3.4)

Question 8:

Find the general solution of the equation sec2 2x = 1 – tan 2x

Answer

sec22x = 1- tan 2x

⇒ 1 + tan2 2x= 1 = 1 – tan 2x

⇒ tan2 2x + tan 2x = 0

⇒ tan 2x(tan 2x + 1) = 0

⇒tan 2x = 0                       or                    tan 2x + 1 = 0

Now, tan 2x = 0

⇒ tan 2x = tan 0

⇒ 2x = nπ + 0, where n ∈ Z

⇒ x = nπ/2, where n ∈ Z

tan 2x + 1 = 0

NCERT Solution Class XI Mathematics Trigonometric Functions Question 25 (Ex 3.3)

Question 25:

Prove that: cos 6x = 32 cos6 x − 48 cos4 x + 18 cos2 x – 1

Answer

L.H.S. = cos 6x

= cos 3(2x)

= 4 cos3 2x − 3 cos2x [cos 3A = 4 cos3 A − 3 cosA]

= 4 [(2 cos2 x − 1)3 − 3 (2 cos2 x − 1) [cos 2x = 2 cos2 x − 1]

= 4 [(2 cos2 x)3 − (1)3 − 3 (2 cos2 x)2 + 3 (2 cos2 x)] − 6cos2 x + 3

= 4 [8cos6x − 1 − 12 cos4x + 6 cos2x] − 6 cos2x + 3

= 32 cos6x − 4 − 48 cos4x + 24 cos2 x − 6 cos2x + 3

= 32 cos6x − 48 cos4x + 18 cos2x – 1

= R.H.S.

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur