**PHYSICS**

**Measurements and Motion:**

Fundamental and derived physical quantities, Concept of Mass, Length and Time, Measurement of different quantities in SI Units. Errors in measurement, Combination of errors, Dimension of physical quantities, Dimension analysis of physical quantities- Conversion of physical quantities from one system of units to another. Concepts of vectors and scalars, Components of vectors, Unit vectors, Addition, Subtraction and Multiplication (vector & scalar) of vectors. Lami’s Theorem. Equations of linear motion for uniformly accelerated bodies (by calculus method). Newton’s laws of motion, Conservation of energy and momentum, Collision in one dimension, Work, Power, Energy, Sliding and Rolling friction. Circular Motion- radial and tangential acceleration, Centripetal force, Banking of tracks, Kepler’s laws of Planetary Motion (Statements only). Newton’s law of ravitation. Earth satellites- Orbital and Escape velocities. Moment of Inertia-definition and expression of Moment of Inertia for rod, ring and circular disc (about an axis passing through the centre and perpendicular to the plane of the body). Angular momentum and Conservation of angular momentum, Projectile motion.

**Heat & Thermodynamics:**

Concept of Temperature, Scales of Temperature (Celsius, Fahrenheit, Kelvin), Definition of mechanical equivalent of heat (J), Thermal energy, Heat Capacity, Specific heat of solids and liquids, Latent heat, Heat transfer-Thermal conductivity of solids, Steady state, Kirchhoff’s laws of heat radiation, Stefan’s law of heat radiation, Newton’s Law of cooling.

Kinetic Theory of gases- Pressure of an ideal gas, Kinetic interpretation of temperature, Degrees of freedom, Law of equipartition of energy.

First Law of Thermodynamics, Specific heats of a gaseous system, Relation between Cp and Cv, Work done during Isothermal and Adiabatic processes, Carnot’s conceptual heat engine and its efficiency, Second law of thermodynamics, Absolute Scale of Temperature.

Characteristics of Materials: Elastic and Plastic behaviors of solids, Elastic limit, Young’s modulus, Shear and Bulk modulus, Poission’s ratio.

**Liquids :**

Surface Tension and Surface Energy, Excess pressure across a spherical liquid surface, Expression for capillary rise. Streamlined and turbulent flow, Bernoulli’s equation and its application, Viscosity- coefficient of viscosity, Stokes law.

**Electricity & Magnetism :**

Electric field intensity and Potential at a point in an electric field, Relation between them, Capacitance- dielectric constant and its effect on capacitance. Series and parallel grouping of capacitances, Energy stored in a charged capacitor, Ohm’s law, Variation of resistance of metallic conductors with temperature, Kirchhoff’s laws and its application to a balanced Wheatstone bridge. Combination of Cells and resistors- series and parallel. Heating effect of electric current and Joule’s law, Electric power and electric energy.

Magnetic Permeability and Susceptibility of materials, Properties of dia, para and ferro magnetic materials. Biot– avart’s law- Magnetic Field due to a circular coil at its centre. Moving coil galvanometer (dead beat only). Force on a moving charge in a uniform magnetic field. Faraday’s laws of electromagnetic induction, Lenz’s law, emf induced in a rotating coil in a magnetic field.

Alternating current- Self and Mutual induction, Phase relation between Voltage and Current in pure resistive, capacitive and inductive circuits. Principle of transformer, elementary idea on electromagnetic waves.

**Wave motion:**

Simple harmonic motion, wave propagation, characteristics of wave motion, longitudinal and transverse waves, superposition of waves:- Stationary waves, Beats. Open and closed organ pipes, velocity of sound in air- effect of pressure, temperature and humidity on it. Doppler Effect, laws of transverse vibration of string (Statement only).

Optics: Reflection and refraction at curved surfaces. Spherical mirror and thin lens formula and refraction through prism. Total internal reflection, Dispersion, Huygens principle (statement only), Young’s double slit experiment.

**Electronic Devices:**

Thermionic emission, Statement of Richardson’s equation and Child’s Law, Vacuum triode- construction and characteristics, relationship between valve constants, Descriptive idea of energy bands:- conductors, insulators and semi conductors, Intrinsic and extrinsic semiconductors, p-type and n-type semiconductors. PN junction, PNP and NPN transistor, PN Junction as a rectifier.

**Relativity and Nuclear Physics:**

Postulates of special theory of relativity, variation of mass with velocity (Statement only), mass energy equivalence relation (Statement only).Atomic nucleus, nuclear forces, nuclear mass, binding energy, mass defect, artificial radio activity, radio isotopes and their uses. Nuclear fission, energy released during nuclear fission, chain reaction, controlled chain reaction, nuclear fusion, energy generation in the Sun, radiation hazards.