Question 6:
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
Answer:
Let us consider a triangle ABC in which CD ⊥ AB.
It is given that
cos A = cos B
⇒ AD/AC = BD/BC …. (1)
We have to prove ∠A = ∠B. To prove this, let us extend AC to P such that BC = CP.
From equation (1), we obtain
AD/BD = AC/BC
⇒ AD/BD = AC/CP (By construction , we have BC = CP) …… (2)
By using the converse of B.P.T,
CD||BP
⇒∠ACD = ∠CPB (Corresponding angles) … (3)
And, ∠BCD = ∠CBP (Alternate interior angles) … (4)
By construction, we have BC = CP.
∴ ∠CBP = ∠CPB (Angle opposite to equal sides of a triangle) … (5)
From equations (3), (4), and (5), we obtain
∠ACD = ∠BCD … (6)
In ΔCAD and ΔCBD,
∠ACD = ∠BCD [Using equation (6)]
∠CDA = ∠CDB [Both 90°]
Therefore, the remaining angles should be equal.
∴∠CAD = ∠CBD
⇒ ∠A = ∠B
Alternatively,
Let us consider a triangle ABC in which CD ⊥ AB.
It is given that,
cos A = cos B
⇒ AD = k BD … (1)
And, AC = k BC … (2)
Using Pythagoras theorem for triangles CAD and CBD, we obtain
CD2 = AC2 − AD2 … (3)
And, CD2 = BC2 − BD2 … (4)
From equations (3) and (4), we obtain
AC2 − AD2 = BC2 − BD2
⇒ (k BC)2 − (k BD)2 = BC2 − BD2
⇒ k2 (BC2 − BD2) = BC2 − BD2
⇒ k2 = 1
⇒ k = 1
Putting this value in equation (2), we obtain
AC = BC
⇒ ∠A = ∠B(Angles opposite to equal sides of a triangle)
Latest Govt Job & Exam Updates: