Question 3:
Convert the given complex number in polar form: 1 – i
Answer
1 – i
Let r cos θ = 1 and r sin θ = –1
On squaring and adding, we obtain
r2 cos2 θ + r2 sin2 θ = 12 + (−1)2
⇒ r2(cos2 θ + sin2 θ) = 1 + 1
⇒ r2 = 2
⇒ r = √2 [Conventionally, r > 0]
∴ √2 cos θ = 1 and √2 sin θ = −1
⇒ cos θ = 1/√2 and sin θ = −1/√2
∴ θ = −π/4 [As θ lies in the IV quadrant]
This is the required polar form.
Latest Govt Job & Exam Updates: