Question 8:
Show that for any sets A and B,
A = (A ∩ B) ∪ (A − B) and A ∪ (B − A) = (A∪ B)
Answer
To show: A = (A ∩ B) ∪ (A − B)
Let x ∈ A
We have to show that x ∈ (A ∩ B) ∪ (A − B)
Case I
x ∈ A ∩ B
Then, x ∈ (A ∩ B) ⊂ (A ∪ B) ∪ (A − B)
Case II
x ∉ A ∩ B
⇒ x ∉ A or x ∉ B
∴ x ∉ B [x ∉ A]
∴ x ∉ A − B ⊂ (A ∪ B) ∪ (A − B)
∴ A ⊂ (A ∩ B) ∪ (A − B) … (1)
It is clear that
A ∩ B ⊂ A and (A − B) ⊂ A
∴ (A ∩ B) ∪ (A − B) ⊂ A … (2)
From (1) and (2), we obtain
A = (A ∩ B) ∪ (A − B)
To prove: A ∪ (B − A) ⊂ A ∪ B
Let x ∈ A ∪ (B − A)
⇒ x ∈ A or x ∈ (B − A)
⇒ x ∈ A or (x ∈ B and x ∉ A)
⇒ (x ∈ A or x ∈ B) and (x ∈ A or x ∉ A)
⇒ x ∈ (A ∪ B)
∴ A ∪ (B − A) ⊂ (A ∪ B) … (3)
Next, we show that (A ∪ B) ⊂ A ∪ (B − A).
Let y ∈ A ∪ B
⇒ y ∈ A or y ∈ B
⇒ (y ∈ A or y ∈ B) and (y ∈ A or y ∉ A)
⇒ y ∈ A or (y ∈ B and y ∉ A)
⇒ y ∈ A ∪ (B − A)
∴ A ∪ B ⊂ A ∪ (B − A) … (4)
Hence, from (3) and (4), we obtain A ∪ (B − A) = A ∪B.
Latest Govt Job & Exam Updates: