ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (BIOTECHNOLOGY)

COURSE CODE: 103

Register Number:		
		Signature of the Invigilator (with date)
-	COURSE CODE: 103	-

Instructions to Candidates:

Time: 2 Hours

1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.

Max: 400 Marks

- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Dip	theria toxin inhibits protein synthesis	s by	
	(A)	causing formation of ADP-EF2 com	plex	•
	(B)	release of peptidyl-tRNA from the F	-site	
	(C)	binding to factor eEf-2		
	(\mathbf{D})	inhibiting peptide bond formation		
2.	Nuc	cleotide excision repair of DNA in E. c	oli	•
	(A)	replaces both strands of DNA in the	dama	ged region
	(B)	uses high energy phosphate bonds		
	(C)	utilizes RNA polymerase to make a	prime	r.
	(D)	requires uvr ABC exonuclease		
3.	A re	ecessive mutation is one which		
	(A)	is not expressed		
	(B)	is expressed only when heterozygou	S	
	(C)	is expressed only when homozygous	or hen	nizygous
	(D)	is eliminated by natural selection		
4.	Whi	ich of the following processes require e	energy:	?
	(A)	ligation	(B)	transformation
	(C)	restriction digestion	(D)	hybridization
5.	T4 p	oolynucleotide kinase is used for		
	(A)	labelling 3' ends of DNA	(B)	labelling 5' ends of DNA
	(C)	creating blunt ends of DNA	(D)	dephosphorylation of DNA
3.	Mun	ng bean nuclease could be used for		•
	(A)	DNA synthesis		
	(B)	Nucleotide hydrolysis		•
	(C)	Trimming single stranded regions in	DNA	
	(D)	Removal of phosphate groups from t	he end	of the DNA
7.		A of a bacterium is not cleaved by gnition DNA sequences are	its o	wn restriction enzyme because the
	(A)	methylated		
	(B)	deleted		
	(C)	bound by inhibitory proteins	-	
	(D)	not accessible to restriction enzymes		•

•

.

8.	3. Which of the following sequences is most likely to be a restriction enzyme recogn site				
	(A)	CGGCTT	(B)	CGCCGC	
	(C)	GTAATG	(D)	GTCGAC	
9.	A hi	ghly aerobic and metabolically versatil	le orga	anism used in oil-spill-clearing is	
	(A)	Mycobacterium smegmatis	(B)	$Azeto bacter\ vineland ii$	
	(C)	Pseudomonas cepacia	(D)	Leuconostoc mesenteroides	
10.	Clos	tridia are anerobes and they form ATF	by 'st	tickland' reaction. For this they use	
	(A)	palmitic acid	(B)	pyruvic acid	
	(C)	ethanol	(D)	aminoacids	
11.	The	enzyme where catalysis involves trans	fer of	electrons are named as	
	(A)	isomerases	(B)	transferases	
	(C)	oxidoreductases	(D)	lyases	
12.	Enzy	yme glutathione peroxide, catalyzes de	struct	ion of H2O2, contain	
	(A)	Zn	(B)	Fe	
	(C)	Se	(D)	Mo	
13.	Whi	ch of the following is a cofactor and not	a coe	nzyme	
	(A)	biotin	(B)	tetrahydrofolic acid	
	(C)	copper	(D)	methylcobalamin	
14.	The	K _m of an enzyme			
	(A)	one half of the V_{max}			
	(B)	a dissociation constant			
	(C)	the substrate concentration that gives	s maxi	mal velocity	
	(D)	the substrate concentration that gives	s half	maximal velocity	
1 5.	Low	er value of Michaelis constant shows			
	(A)	greater affinity of the enzyme for the	substr	ate	
	(B)	less affinity of the enzyme for the sub	strate		
	(C)	enzyme is allosteric			
	(D)	question is incomplete			

16.	Wh	Which of the following statement is true about non-competitive inhibition					
	(A)) The V_{max} decreases and km remain unchanged					
	(B)	The V_{max} remain unchanged and km increases					
	(C)	V_{max} and km both decreases					
	(D)	$V_{\text{\scriptsize max}}$ decreases and $k_{\text{\scriptsize m}}$ increases					
17.	At v	what [S] is the velocity (V_0) of an enzyn	ie-cata	alyzed reaction is 25% of the $ m V_{max}$			
	(A)	$3/4~k_{ m m}$	(B)	$4 k_m$			
	(C)	$1/3~k_{\rm m}$	(D)	$1/4 k_{\rm m}$			
18.		ich of the following regulatory actions n enzyme	involv	ves a reversible covalent modification			
	(A)	allosteric modulation					
	(B)	competitive inhibition					
	(C)	conversion of zymogen to active enzy	me				
	(D)	phosphorylation of a serine hydroxyl	on the	e enzyme			
19.	Vita	min-D is derived from which of the foll	lowing	g precursors by the action of UV-light			
	(A)	7-dehydrocholesterol					
	(B)	lanosterol					
	(C)	glycocholate					
	(D)	squalene epoxide					
20.	Whi	ch of the following coenzymes acts as e	lectro	n sink to promote catalysis			
	(A)	biotin					
	(B)	lipoamide					
	(C)	CoA					
	(D)	pyridoxal phosphate					
21.	Whi	ch of the following vitamins does not ac	ct as a	precursor for co-enzymes			
	(A)	biotin	(B)	thiamine			
	(C)	folic acid	(D)	ascorbic acid			
22.	Whice react	ch of the following statements is true tion	regar	ding enzyme catalysis of a chemical			
	(A)	increases the forward and reverse rea	ction	rates			
	(B)	decrease ΔG° so that the reaction can	proce	ed spontaneously			
	(C)	increases the energy of a transition st	ate				
	(D)	decreases the entropy of reaction		•			
103		4		•			

23.		er of decreasing concentrations i		ions Na+, K+, Mg++ and Ca++ in the th respect to a quiescent mammalian
	(A)	K+, Na+, Mg++, Ca++	(B)	Na+, K+, Mg++, Ca++
	(C)	Mg++, K+, Na+, Ca++	(D)	Ça++, Mg++, K+, Na+
24.	Whi	ch one of the following lipids is o	commonly for	und in biological membranes?
	(A)	monoglycerides	(B)	diglycerides
	(C)	triglycerides	(D)	none of these
25.	Mos	t abundant lipid in plasma mem	brane is	
	(A)	cholesterol	(B)	sterol
	(C)	glycolipid	(\mathbf{D})	phospholipids
26.	Whi	ch of the following is a function	of plasma me	embrane
	(A)	structural barrier and cell com	munication	
	(B)	metabolic activities and cell ad	hesion	
	(C)	mass flow regulation, active tra	ansport, diff	usion, endocytosis and exocytosis
	(D)	all of the above		
27.		en an ion or solute is moved ag	ainst a conc	entration gradient using energy, the
	(A)	diffusion	(B)	active transport
	(C)	transport	(D)	regulated diffusion
28.		eptor mediated endocytosis from wing coat proteins	n plasma m	embrane requires which one of the
	(A)	Clathrin	(B)	SNARE
	(C)	Arrestin	(D)	Glycophorin
29.	A pa	atch-clamp device is used to		
	(A)	measure the strength of a elect	rochemical g	gradient
	(B)	study the properties of individu	ual transmit	ters
	(C)	infuse different kinds of ions in	nto an axon	
	(D)	study the properties of individu	ıal membrar	ne channel
30.		subcellular fraction from liver vity, it is enriched in	r tissue exh	ibits high level of acid phosphatise
	(A)	nuclei	(B)	lysosomes
	(C)	micosome	(D)	golgi bodies

31.	Which of the following amino acids can exists as diastereomers?					
	(A)	isoleucine and leucine	(B)	isoleucine and valine		
	(C)	isoleucine and threonine	(D)	serine and threonine		
32.	An e	essential building block of phosphatic	lic acid	and phosphotidylcholine		
	(A)	glycerol	(B)	lysine		
	(C)	cholesterol	(D)	glucose		
33.	The	concentration of sphingomyelins are	increas	ed in		
	(A)	Gaucher's disease	(B)	Fabry's disease		
	(C)	Febrile disease	(D)	Niemann-Pick disease		
34.	Alka	aline hydrolysis of a triglyceride is				
	(A)	saponification	(B)	esterification		
	(C)	hydrogenation	(D)	dehydration		
35.	Whi	ch of the following co-factor is essent	ial for t	he activity of acetyl coA carboxylase		
	(A)	NAD+	(B)	biotin		
	(C)	TPP	(D)	Vit B6		
36.	Refs	um's disease arises due to defective				
	(A)	$oldsymbol{eta}$ - oxidation pathway				
	(B)	lpha - oxidation pathway				
	(C)	ω - oxidation pathway				
	(D)	TCA cycle				
37.	A co	mmon step involved in the biosynthe	sis of al	l steroid hormone		
	(A)	conversion of cortisol to corticostero	ne			
	(B)	cholesterol side chain cleavage				
	(C)	aromatization		•		
	(D)	dehydrogenation				
38.	Which of the following does not belong to glycosphingolipids					
	(A)	cerebrosides	(B)	gangliosides		
	(C)	globosides	. (D)	sphingomyelin		
39.	Cellu	ılase is indigestible by humans becau	ise we l	ack the enzyme that hydrolyzes		
	(A)	lpha -1,4 glycosidic bonds	(B)	lpha-1,6 glycosidic bonds		
	(C)	β -1,4 glycosidic bonds	(D)	long chain polysachharides		

40.	Whi	ich of the following compounds is not	amphil	phatic					
	(A)	cholesterol	(B)	oleic acid					
	(C)	succinate	(D)	phosphatidyl choline					
41.		ch of the following methods for study: lification of the genome?	ing loss	s of gene function does not involve any					
	(A)	(A) gene knockout by homologous recombination							
	(B)	RNA interference by injection of dou	ıble str	randed DNA					
	(C)	expression of an integrated antisens	se trans	sgene					
	(D)	all the above							
42 .	Rest	triction fragment length polymorphism	n (RFL	P) is					
	(A)	the technique used to fingerprint of	inherit	tance					
	(B)	the difference in the restriction map	s betw	een two individuals of one species					
	(C)	the difference in the restriction map	s betw	een two individuals of two species					
	(D)	the difference in the restriction map	s betw	een the two alleles in a diploid cell					
4 3.	A re	porter gene							
	(A)	(A) acts as repressor							
	(B)	allows gene expression to be readily	measu	red					
	(C)	enhances mRNA stability							
	(D)	interacts with RNA polymerase							
44.		nsduction has been used extensively for wing process is useful for gene mappi	_	me mapping of bacteria. which of the					
	(A)	bacterial lysis	(B)	generalized transduction					
	(C)	specialized transduction	(D)	site specific recombination					
4 5.		double stranded DNA samples that pairs, but differ significantly in their		-					
	(A)	dialysis	(B)	agarose gel electrophoresis					
	(C)	density gradient centrifugation	(D)	oligo-dT column chromatography					
4 6.	Pyro	sequencing derives its name from the	fact th	nat					
	(A)	the bases are detected by pyrolysis							
	(B)	it detects pyrophosphate released du	iring ba	ase incorporation					
	(C)	it generates pyrograms as output							
	(D)	it uses enzyme apyrase to detect the	hases						

47 .	Aro	ma in rice is due to	-				
	(A)	2-acetyl-1-pyrroline	(B)	Acetyl choline			
	(C)	4-benzyl pyrroline	(D)	2-ethyl pyrroline			
48.	For	glycoproteins, most commonly u	sed probe is				
	(A)	antibody	(B)	antigens			
	(C)	interferons	(D)	lectin			
49.	Pha	age M13 vectors are widely used i	for				
	(A)	obtaining fragments of cloned	DNA suitable	e for DNA sequencing			
	(B)	obtaining single stranded copie	es of cloned I	ONA suitable for DNA sequencing			
	(C)	obtaining double stranded copi	es of cloned l	DNA suitable for electrophoresis			
	(D)	obtaining double stranded copi	es of cloned l	DNA suitable for DNA sequencing			
50.	Vec	tors designed to replicate in cells	of two differ	ent species are called			
	(A)	plasmids	(B)	phagemids			
	(C)	transfer vectors	(D)	shuttle vectors			
51.	Par	kinson's disease is associated wit	th				
	(A)	an underproduction of γ -amin	obutyrate				
	(B)	an underproduction of dopamir	ne .				
	(C)	an overproduction of histamine	;				
	(D)	an overproduction of γ -aminol	butyrate	•			
52 .	The	inducer:					
	(A)	(A) combines with a repressor and prevents it from binding to the promoter					
	(B)	combines with a repressor and prevents it from binding to the operator.					
	(C)	binds to the promoter and prev	ents the repr	essor from binding to the operator			
	(D)	binds to the operator and preve	nts the repre	essor from binding at this site			
53.		atify the following point mutation to UUG CUG AUA	n in mRNA	UAU to UAU AAC CUA and UUG			
	(A)	transition and frame shift respe	ectively				
	(B)	frame shift and transition respe	ectively				
	(C)	transversion frame shift respec	tively				
	(D)	frame shift and transition respe	ectively				

54. Integral membrane proteins are helped to locate across the lipid bilayer by				across the lipid bilayer by				
	(A)	formation of disulfide bonds						
	(B)	using an α helix made up of amino ac	eids w	ith hydrophilic side chains				
	(C)	using an α helix made up of amino acids with hydrophobic side chains						
	(D)	glycosylation						
55.		enzyme following Michelis-Menten l strate concentration is plotted against						
	(A)	sigmoidal	(B)	parabolic				
	(C)	hyperbolic	(D)	straight line				
56.	The	TψC arm in the tRNA molecule	posse	sses the sequence				
	(A)	T, pseudouridine and C	(B)	T, uridine and C				
	(C)	T, dihydrouridine and C	(D)	T, adenine and C				
57.	_	ynthetic nucleotide analogue, used in ctions is	the c	chemotherapy of cancer and viral				
	(A)	arabinosyl cytosine	(B)	4-hydroxypyrazolopyrimidine				
	(C)	6-mercaptopurine	(D)	6-thioguanine				
58.	The	most likely lethal mutation is						
	(A)	substitution of adenine for cytosine	(B)	insertion of one nucleotide				
	(C)	deletion of three nucleotides	(D)	substitution of cytosine for guanine				
59.	The blood sugar raising action of the hormone of suprarenal cortex is due to							
	(A)	glyconeogenesis						
	(B)	glycogenolysis						
	(C)	glucagon like activity		•				
	(D)	due to inhibition of glomerular filtr	ation (of glucose				
60.	Supp	pressor mutations occur in						
	(A)	structural genes	(B)	promoter regions				
	(C)	silencer elements	(D)	anticodons of tRNA				
61.		ls for gene therapy in human beings ess, in a genetic disease called	were	first carried out, with considerable				
	(A)	cystic fibrosis	(B)	thalassemia				
	(C)	adenosine deaminase deficiency	(D)	Lesch-Nyhan syndrome				

•

.

•

.

62.	If DNA of a cancer cell is introduced into a normal cell, the recipient cell				
	(A)	destroys the DNA	(B)	loses its ability to divide	
	(C)	dies	(D)	changes into a cancer cell	
63.	Amp	olification of dihydrofolate reductase ge	ne in	a cancer cell makes the cell	
	(A)	susceptible to folic acid deficiency			
	(B)	less malignant		•	
	(C)	resistant to amethopterin therapy			
	(D)	responsive to amethopterin therapy			
64.	Orci	nol method is employed in the quanti-	tation	of	
	(A)	nucleic acid	(B)	DNA	
	(C)	RNA	(D)	proteins	
65.	Whi	ch one of the following statements is no	t cha	racteristic of allosteric enzymes?	
	(A)	they frequently catalyze a committed	step e	early in a metabolic pathway	
	(B)	they are often composed of subunits		•	
	(C)	they follow Michaelis-Menten kinetics	3		
	(D)	they frequently show co-operativity fo	r sub	strate binding	
66.	'Clea	aring factor' is			
	(A)	lipoprotein lipase	(B)	rotonase	
	(C)	7-dehydro cholesterol	(D)	eta -sitosterol	
67.	Rap	oport-Luebering cycle is located in			
	(A)	liver	(B)	muscles	
	(C)	brain	(D)	erythrocytes	
68.	In I	Lineweaver-Burk plot, the y-intercept i	epres	sents	
	(A)	V_{max}	(B)	K_{m}	
	(C)	1/ K _m	(D)	None of the above	
69.	Gen	etically engineered male sterile crop pla	ants n	nay be produced by inserting	
	(A)	lectin gene	(B)	chitinase gene	
	(C)	barnase gene	(D)	BT toxin gene	

70.	 Choose the correct statement(s) a P. Tli pol has no 3' → 5' exonuclea Q. Pfu pol has 3' → 5' exonuclease R. Taq pol has 3' → 5' exonuclease S. Taq pol has no proof reading al 	activity activity
	(A) P, Q and R	(B) Q, R and S
	(C) P, R and S	(D) P, Q and S
71.	 Which of the following would not (A) mRNA size (B) location of restriction sites in (C) spatial expression of a particular particular (D) temporal expression of a particular particular (D) 	ular gene
72.		cial diploid, of the two $lacZ$ enzymes, only the esized constitutively. This observation show that
	(A) cis-dominant	(B) cis recessive
	(C) trans-dominant	(D) trans-recessive
73.	the project (B) identifying clones whose in cover a given segment of DN	ne to ensure that no gaps are present at the end obserts overlap to generate a library of clones tha
73.	 (A) sequencing a genome at a title the project (B) identifying clones whose in cover a given segment of DN (C) generating a map along a ch 	ne to ensure that no gaps are present at the end obserts overlap to generate a library of clones that
73. 74.	 (A) sequencing a genome at a title the project (B) identifying clones whose in cover a given segment of DN (C) generating a map along a ch (D) aligning DNA sequences by 	ne to ensure that no gaps are present at the end of serts overlap to generate a library of clones that A comosome in a step-by-step manner computer to generate contigs ins having similar molecular mass but different
	 (A) sequencing a genome at a title project (B) identifying clones whose in cover a given segment of DN (C) generating a map along a ch (D) aligning DNA sequences by A mixture containing two protes 	ne to ensure that no gaps are present at the end of serts overlap to generate a library of clones that A comosome in a step-by-step manner computer to generate contigs ins having similar molecular mass but different
	 (A) sequencing a genome at a tituthe project (B) identifying clones whose in cover a given segment of DN (C) generating a map along a ch (D) aligning DNA sequences by A mixture containing two protections of the properties can be separated. 	ne to ensure that no gaps are present at the end of serts overlap to generate a library of clones that A comosome in a step-by-step manner computer to generate contigs ins having similar molecular mass but different ated by
	 (A) sequencing a genome at a title project (B) identifying clones whose in cover a given segment of DN (C) generating a map along a ch (D) aligning DNA sequences by A mixture containing two proteoligomeric properties can be separted. (A) SDS PAGE analysis (C) isoelectric focusing 	serts overlap to generate a library of clones that A comosome in a step-by-step manner computer to generate contigs ins having similar molecular mass but different ated by (B) native PAGE analysis
74.	 (A) sequencing a genome at a title project (B) identifying clones whose in cover a given segment of DN (C) generating a map along a ch (D) aligning DNA sequences by A mixture containing two proteoligomeric properties can be separted. (A) SDS PAGE analysis (C) isoelectric focusing Which one of the following antibidential 	ne to ensure that no gaps are present at the end of serts overlap to generate a library of clones that A comosome in a step-by-step manner computer to generate contigs ins having similar molecular mass but different ated by (B) native PAGE analysis (D) both B and C

76.	. Th	ne molecular formulae of deoxyriboso	e sugar a	nd ribose sugar respectively are
	(A		(B)	
	(C)) $C_5 H_{10} O_5$ and $C_5 H_{10} O_4$	(D)) $C_5 H_{10} O_5$ and $C_6 H_{10} O_4$
77.	На	aploid plant cultures are got from		
	(\mathbf{A})	leaves	(B)	root tip
	(C)	pollengrain	(D)	buds
78.	Ge	ne is segment of		
	(A)	RNA	(B)	DNA
	(C)	RNA or DNA	(D)	Both DNA and RNA
79.	DN	A sequence is ATG. What would be	the seque	ence of bases in anticodon of tRNA
	(A)		(B)	AUG
	(C)	UAC	(D)	TAC
80.	VN	TRs represnets-		
	(A)	new terminal regions in DNA		
	(B)	functional genes in the DNA		
	(C)	split genes in the sample DNA		-
	(D)	specific non-coding sequences with	h unique	tandem repeats
81.	Ten	aperature dependent sex determinat	tion is obs	served in
	(A)	drosophila	(B)	amphibians
	(C)	reptiles	(D)	sea urchins
82.	HDI	L is synthesized and secreted from		
	(A)	liver	(B)	kidney
	(C)	pancreas	(D)	muscle
83.	Leas	st concentration of urea present in		
	(A)	renal artery	(B)	renal vein
	(C)	post caval	(D)	dorsal aorta
84.	Man	ifestation of musculin pattern in fer	nales due	e to hormonal effects is known as
	(A)	muscularity	(B)	virilism
	(C)	castration	(D)	epitaxis

•

85.	Ontogenically origin of liver and pancreas is					
	(A)	ectodermal	(B)	mesodermal		
	(C)	endodermal	(D)	none		
86.	Lymph differs from blood in having					
	(A)	blood with more RBC and less WBC	(B)	blood without plasma		
	(C)	plasma without protein	(D)	blood with no RBC and more WBC		
87.	Blind spots does not contain					
	$(\mathbf{A})_{\cdot}$	\mathbf{rods}	(B)	cones		
	(C)	both rods and cones	(D)	tympanum		
88.	Which of the following belongs to the class of pepsin and trypsin					
	(A)	rennin	(B)	amylase		
	(C)	thyroxin	(D)	secretin		
89.	The respiration rate is lowest during					
	(A)	playing tennis	(B)	running		
	(C)	snoring when sleeping	(D)	eating food		
90.	Meeting point of all metabolic pathway is					
	(A)	lactic acid	(B)	citric acid		
	(C)	ornithine cycle	(D)	acetyl co-A		
91.	All of the following statements about monomeric G proteins are true EXCEPT:					
	(A)	(A) they are regulated by GTP-GDP exchange proteins				
	(B) they are regulated by GTPase activating proteins					
	(C) they regulate enzymes that synthesize cGMP					
	(D)	they regulate vesicle formation				
92.	Which of the following is largest in size					
	(A)	amacrine cells	(B)	purkinje cells		
	(C)	renshaw cells	(D)	baket cells		
93.	Retroviral oncogenes are probably aberrant forms of normal cellular genes that regulate cell proliferation. Which of the following gene products are LEAST likely to be encoded by an oncogene?					
	(A)	GTP-binding proteins	(B)	DNA-binding proteins		
	(C)	transmembrane proteins	(D)	capsid proteins		

.

•

94.	All of the following are known to be part of a signal transduction cascade EXCEPT					
0 1.	(A) phosphorylation of fibronectin					
	(B)					
	(C)					
	(D)					
0.5						
95.	Which of the following is NOT a consequence of increased cellular levels of cAMP?					
	(A)	activation of a kinase cascade				
	(B)	activation of the transducin G-protein				
	(C)					
	(D)	inhibition of glycogen synthesis				
96.	SNARE proteins are found in the membranes of all of the following compartments EXCEPT					
	(A)	mitochondria	(B)	golgi complex		
	(C)	early endosome	(D)	endoplasmic reticulum		
97.	Treatment of root tip meristem cells with the microtubule inhibitor colchicine results in all of the following EXCEPT					
	(A)	induction of polyploidy	(B)	prevention of cytokinesis		
	(C)	inhibition of mitotic spindle assembly	(D)	cessation of DNA replication		
98.	Proline disrupts -helical structure in proteins because it is					
	(A)	an acidic amino acid	(B)	an aromatic amino acid		
	(C)	an imino acid	(D)	a basic amino acid		
99.	Acetyl CoA, the cytoplasmic substrate for fatty acid synthesis, is formed in mitochondria. The inner mitochondrial membrane is impermeable to acetyl CoA Which of the following compounds is the form in which the carbon of acetyl CoA is transported to the cytoplasm?					
	(A)	malate	(B)	acetate		
	(C)	citrate	(D)	pyruvate		
100.	The GAL4 protein activates transcription from the GAL1 promoter in yeast. To bind to DNA, the protein utilizes a					
	(A)	heme group	(B)	transcriptional-activating domain		
	(C)	zinc-finger domain	(D)	transmembrane segment		