ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (ELECTRONICS & COMMUNICATION ENGINEERING)

COURSE CODE: 138

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 138

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Satellite tr	acking sta	tions	are locate	d in re	emote	e areas in order	o mini	mize the e	effect
	(A) solar	noise				(B)	manmade noise			
	(C) cosmi	c noise				(D)	thermal noise			
2.	24 hour sa approxima			ous satelli	ite) sh	ould l	be placed in an e	quator	ial orbit w	ith a
	(A) 1500	km	(B)	2000 km		(C)	5000 km	(D)	36000 km	n
3.	A satellite other regio		_	lects back	the s	ignal	s from one regio	n of th	ne earth to	o the
	(A) orbiti	ng satellite	е			(B)	geostationary s	atellite		
	(C) active	e satellite				(D)	passive satellit	е		
4.	at the mic maximum assuming t	lpoint of t usable free he flat ear	he pa quenc th is	ath is 300 by for the l	km a	and t	via the ionosphe the critical frequent the stations of	ency i	s 9 MHz. stance 800	The 0 km
	(A) 11.25	MHz	(B)	12 MHz		(C)	15 MHz	(D)	25.5 MHz	Z
5.	If a sky wa 30° then th				0 MHz	is in	acident on the D	region	at an ang	gle of
	(A) 15°		(B)	60°		(C)	30°	(D)	5.5°	
6.	parametric	amplifier res of the	follo ampli	wed by a ifiers are	FET 20 dB	amp , 9 K	al is directly am lifier. The gains and 10 dB, 200	and	effective 1	noise
	(A) 11 K		(B)	20 K		(C)	29 K	(D)	39 K	
7.							twice that of a go			ellite,
	(A) 48 hr	s	(B)	12 hrs		(C)	96 hrs	(D)	6 hrs	
8.	Communic by using	ation sate	lites	are allotte	ed ban	dwid	th of 500MHz.	This ca	n be incre	eased
	(A) Frequ	iency and	polari	zation reu	ise					
	(B) Time	division m	ultipl	lexing						
	(C) Frequ	ency divis	ion m	ultiplexin	g					
	(D) Triple	e modular	redun	dancy						

9.	The power transmantenna has a gain						
	24,567 km. If the a	ntenna	of earth stat	ion has a	gain of 32 dB	s, the pow	er received is
	(A) 32 pW	(B)	3.2 fW	(C)	10.2 pW	(D)	1.3 fW
10.	Antenna elevation kept above 5° to	angle a	at the ground	d station	for satellite c	ommunic	ation is always
	(A) Minimize the	sky noi	se temperati	ire			
	(B) Reduce the ef temperature				pour absorption	on on the	antenna noise
	(C) Minimize the	slant ra	ange				
	(D) Increase the v	risibilit	y of the satel	lite			
11.	The RST 5.5 interm	upt ser	vice routine s	tart from	location		
	(A) 0020H		0024H	(C)		(D)	002CH
12.	The instruction, the	at does	not clear the	accumul	ator of 8085 i	g	
	(A) XRA A	it does	nor crear viic	(B)	ANI 00H	i.i.	
	(C) MVI A,00H			(D)	None of the	above	
13.	An 8085 micropro				The state of the s		
	(A) 4 ms	(B)	0.4 ms	(C)	10 ms	(D)	25 ms
14.	The content of Accinstructions will be	umulat	or of 8085 n	nicroproc	essor after ex	ecution o	of the following
	MVI A, A7H ORA A RLC						
	(A) FFh	(B)	4Fh	(C)	3Fh	(D)	CEh
15.	A microprocessor w	ith 12-l	oit address b	us will be	to access	kiloby	tes of memory
	(A) 0.4	(B)		(C)		(D)	
16.	Consider the follow	ing loor	1				
	XRA A LXI B, 0007H LOOP: DCX B						
	JNZ LOOP The loop will be exe	mutad					
	(A) 1 times	(B)	8 times	(C)	7 times	(D)	Infinite times
	(11) I tilles	(D)	o miles	(0)	, times	(D)	minute times

17.	How many and what are the ma	chine cycles nee	eded for execution of Pl	JSH B?
	(A) 2 fetch and 1 memory writ	e (B)	3 fetch and 2 memory	write
	(C) 3 fetch and 1 memory writ	e and read (D)	3 fetch and 2 memory	read
18.	The total number of memory at 8085 processor executes the inst			fetch) when an
	(A) 1 (B) 2	(C)	3 (D)	4
19.	A memory system of size 26 K which have 12 addresses and 4 design the memory system is			
	(A) 2 (B) 4	(C)	8 (D)	16
20.	The number of memory cycles re	equired to execu	te the following 8085 in	nstructions
	(i) LDA 3000H (ii) LXI D, FOF 1 H would be			
	(A) 2 for (i) and 2 for (ii)	(B)	4 for (i) and 3 for (ii)	
	(C) 3 for (i) and 3 for (ii)	(D)	3 for (i) and 4 for (ii)	
21.	For a Gunn diode oscillator, the region length is 10×10^{-4} cm. The			
	(A) 1 MHz (B) 10 M	MHz (C)	1 GHz (D)	10 GHz
22.	For a parabolic reflector ante measurement at 10 GHz should			r field pattern
	(A) 30 m (B) 200	m (C)	400 m (D)	600 m
23.	In a microwave measurement a 50 mW. If a 3 dB coupler is place			
	(A) 50 mW (B) 25 n	nW (C)	12.5 mW (D)	6.25 mW
24.	For rectangular waveguide of di TE ₁₀ mode is 2 GHz. What is the			
	(A) 1 GHz (B) 3.46	GHz (C)	4 GHz (D)	6 GHz
25.	Two microwave signals travelling when operating at 10 GHz. What			
	(А) 2 п (В) п	(C)	3 m (D)	4 п

26.	In measuring pulsed microwave power, the pulse duration is $1.5~\mu s$ with PRF of $1~kHz$. If the CW power sensor reads $15~mW$, what is the average signal power during the pulse
	(A) 5 W (B) 10 W (C) 15 W (D) 20 W
27.	An IMPATT diode has a drift length of $4\mu m.$ The drift velocity of Si is $10^5 m/s.$ The operating frequency of IMPATT diode is
	(A) 25 GHz (B) 20 GHz (C) 12.5 GHz (D) 125 GHz
28.	On a micro strip line, the wavelength measures are 12 mm for a 10 GHz signal. The dielectric constant of the equivalent homogeneous line is
	(A) 3.5 (B) 5.5 (C) 6.25 (D) 7
29.	A cylindrical cavity operating in TE_{111} mode has a 3 dB bandwidth of 2.4 MHz and its quality factor is 4000. Its resonant frequency would be
	(A) 9.6 GHz (B) 6.789 GHz (C) 5.543 GHz (D) 3.92 GHz
30.	If the peak power of a pulsed microwave system is $10^4\mathrm{W}$ and the average power is $800\mathrm{W}$, then the duty cycle will be
	(A) 80% (B) 8% (C) 0.8% (D) 0.08%
31.	An antenna has a gain of 44 dB. Assuming that the main beam of the antenna is circular in cross section, the beam width will be
	(A) 0.4456° (B) 1.4456° (C) 2.4456° (D) 3.4456°
32.	A dipole antenna of $\lambda/8$ length has an equivalent total loss resistance of 1.5 Ω . The efficiency of the antenna is
	(A) 0.89159% (B) 8.9159% (C) 89.159% (D) 891.59%
33.	A transmitting antenna has a gain of 10. It is fed with a signal power of 1 W. Assuming free space propagation, what power would be captured by a receiving antenna of effective area 1 m ² in the bore sight direction at a distance of 1 m?
	(A) 10 W (B) 1 W (C) 2 W (D) 0.8 W
34.	An earth station employs a 1 kW high power amplifier (HPA) and a 20 m Cass grain antenna whose transmitted gain is 65 dB at a free space wavelength of 2.1 cm. If the loss of the wavelength that connects HPA to the feed is 1 dB, than the earth station EIRP is

(A) 29 dBm (B) 59 dBm (C) 94 dBm (D) 124 dBm

35.	obsta	acle 10m high	midway	between th	em. The	height of the	in an LO antennas	S link, have s such that	an the
	(A)	15 m	(B)	18 m	(C)	20 m	(D)	25 m	
36.	A pa	rabolic dish ar intenna at a w	itenna l aveleng	nas a diamete th of 3.14 cm	er of 1 m. n is	The maximu	m possibl	e (ideal) gair	n of
	(A)	20 dB	(B)	30 dB	(C)	40 dB	(D)	50 dB	
37.	both	antennas ha	s unity	ith a 300 MF power gain,	Iz carrier the pow	frequency pr er received b	roduces 2 by another	kW of power antenna a	r. If
	(A)	11.8 mW	(B)	18.4 W	(C)	18.4 μW	(D)	12.7 μW	
38	A th	in dipole anter	na is λ	15 long. If it	s loss res	istance is 1.2	Ω, the eff	iciency is	
00.	(A)	41.1%							
39.	An a	intenna can be orm over its le	modell	ed as an elec en radiation	etric dipol	le of length 4 ce of the ante	m at 3 M	Hz. if currer	nt is
	(A)	$1.974~\Omega$	(B)	$1.263~\Omega$	(C)	$2.186~\Omega$	(D)	$2.693~\Omega$	
40.	For	a Hertz dipole	antenn	a, the half po	wer bear	n width (HPE	BW) in the	E-plane is	
	(A)	360°	(B)	180°	(C)	90°	(D)	45°	
41	Ani	dool nulse rad	ar recei	ver					
41.					h				
				an banama					
	(D)							1	
42.				tenna diame	ter to the	wavelength	in a radar	system is h	igh
	(A)			ea	(B)	good target	discrimin	ation	
	(C)		A Commence of the Commence of		(D)	large maxir	num rang	е	
43.	Rad	ar detection is	limited	to line of sig	ht becau	se			
	(A)	of curvature	of the e	arth					
	(B)	the waves ar	e not re	flected by th	e ionosph	iere			
	(C)								
	(D)	short wavele	ngths a	re used					
	36. 37. 38. 40. 41.	obsta fist F (A) 36. A pa the a (A) 37. A tra both dista (A) 38. A th (A) 39. An a unife (A) 40. For (A) 41. An i (A) (B) (C) (D) 42. In c this (A) (C) 43. Rad (A) (B) (C)	obstacle 10m high fist Fresnel zone is (A) 15 m 36. A parabolic dish and the antenna at a w (A) 20 dB 37. A transmitting and both antennas has distance of 1 km is (A) 11.8 mW 38. A thin dipole anter (A) 41.1% 39. An antenna can be uniform over its letter (A) 1.974 Ω 40. For a Hertz dipole (A) 360° 41. An ideal pulse rad (A) should have the should hav	obstacle 10m high midway fist Fresnel zone is free of a (A) 15 m (B) 36. A parabolic dish antenna has the antenna at a waveleng (A) 20 dB (B) 37. A transmitting antenna we both antennas has unity distance of 1 km is (A) 11.8 mW (B) 38. A thin dipole antenna is λ/(A) 41.1% (B) 39. An antenna can be modell uniform over its length, the (A) 1.974 Ω (B) 40. For a Hertz dipole antenna (A) 360° (B) 41. An ideal pulse radar receive (A) should have very lar (B) should have very sme (C) both (A) and (B) (D) none of these 42. In case the ratio of the antenna (A) increased capture are (C) difficult target acquired (A) of curvature of the end (B) the waves are not received (C) long wavelengths are	obstacle 10m high midway between the fist Fresnel zone is free of any obstacle, (A) 15 m (B) 18 m 36. A parabolic dish antenna has a diamethe antenna at a wavelength of 3.14 cm (A) 20 dB (B) 30 dB 37. A transmitting antenna with a 300 MF both antennas has unity power gain, distance of 1 km is (A) 11.8 mW (B) 18.4 W 38. A thin dipole antenna is λ/15 long. If it (A) 41.1% (B) 59% 39. An antenna can be modelled as an electuniform over its length, then radiation (A) 1.974 Ω (B) 1.263 Ω 40. For a Hertz dipole antenna, the half potation (A) 360° (B) 180° 41. An ideal pulse radar receiver (A) should have very large bandwidt (B) should have very large bandwidt (C) both (A) and (B) (D) none of these 42. In case the ratio of the antenna diamenthis likely not to result in (A) increased capture area (C) difficult target acquisition 43. Radar detection is limited to line of signal (A) of curvature of the earth (B) the waves are not reflected by the (C) long wavelengths are used	obstacle 10m high midway between them. The fist Fresnel zone is free of any obstacle, should b (A) 15 m (B) 18 m (C) 36. A parabolic dish antenna has a diameter of 1 m. the antenna at a wavelength of 3.14 cm is (A) 20 dB (B) 30 dB (C) 37. A transmitting antenna with a 300 MHz carrier both antennas has unity power gain, the pow distance of 1 km is (A) 11.8 mW (B) 18.4 W (C) 38. A thin dipole antenna is λ/15 long. If its loss res (A) 41.1% (B) 59% (C) 39. An antenna can be modelled as an electric dipol uniform over its length, then radiation resistant (A) 1.974 Ω (B) 1.263 Ω (C) 40. For a Hertz dipole antenna, the half power bear (A) 360° (B) 180° (C) 41. An ideal pulse radar receiver (A) should have very large bandwidth (B) should have very small bandwidth (C) both (A) and (B) (D) none of these 42. In case the ratio of the antenna diameter to the this likely not to result in (A) increased capture area (B) (C) difficult target acquisition (D) 43. Radar detection is limited to line of sight because (A) of curvature of the earth (B) the waves are not reflected by the ionosph (C) long wavelengths are used	obstacle 10m high midway between them. The height of the fist Fresnel zone is free of any obstacle, should be (A) 15 m (B) 18 m (C) 20 m 36. A parabolic dish antenna has a diameter of 1 m. The maximuthe antenna at a wavelength of 3.14 cm is (A) 20 dB (B) 30 dB (C) 40 dB 37. A transmitting antenna with a 300 MHz carrier frequency proboth antennas has unity power gain, the power received by distance of 1 km is (A) 11.8 mW (B) 18.4 W (C) 18.4 μW 38. A thin dipole antenna is λ/15 long. If its loss resistance is 1.2 (A) 41.1% (B) 59% (C) 74.5% 39. An antenna can be modelled as an electric dipole of length 4 uniform over its length, then radiation resistance of the antenna (A) 1.974 Ω (B) 1.263 Ω (C) 2.186 Ω 40. For a Hertz dipole antenna, the half power beam width (HPE (A) 360° (B) 180° (C) 90° 41. An ideal pulse radar receiver (A) should have very large bandwidth (B) should have very small bandwidth (C) both (A) and (B) (D) none of these 42. In case the ratio of the antenna diameter to the wavelength this likely not to result in (A) increased capture area (B) good target (C) difficult target acquisition (D) large maximum diameter (C) difficult target acquisition (D) large maximum diameter (C) long wavelengths are used	obstacle 10m high midway between them. The height of the antennas fist Fresnel zone is free of any obstacle, should be (A) 15 m (B) 18 m (C) 20 m (D) 36. A parabolic dish antenna has a diameter of 1 m. The maximum possible the antenna at a wavelength of 3.14 cm is (A) 20 dB (B) 30 dB (C) 40 dB (D) 37. A transmitting antenna with a 300 MHz carrier frequency produces 2 both antennas has unity power gain, the power received by another distance of 1 km is (A) 11.8 mW (B) 18.4 W (C) 18.4 μW (D) 38. A thin dipole antenna is λ/15 long. If its loss resistance is 1.2 Ω, the eff (A) 41.1% (B) 59% (C) 74.5% (D) 39. An antenna can be modelled as an electric dipole of length 4 m at 3 M uniform over its length, then radiation resistance of the antenna is (A) 1.974 Ω (B) 1.263 Ω (C) 2.186 Ω (D) 40. For a Hertz dipole antenna, the half power beam width (HPBW) in the (A) 360° (B) 180° (C) 90° (D) 41. An ideal pulse radar receiver (A) should have very large bandwidth (B) should have very small bandwidth (C) both (A) and (B) (D) none of these 42. In case the ratio of the antenna diameter to the wavelength in a radar this likely not to result in (A) increased capture area (B) good target discrimin (C) difficult target acquisition (D) large maximum rang 43. Radar detection is limited to line of sight because (A) of curvature of the earth (B) the waves are not reflected by the ionosphere (C) long wavelengths are used	obstacle 10m high midway between them. The height of the antennas such that fist Fresnel zone is free of any obstacle, should be (A) 15 m (B) 18 m (C) 20 m (D) 25 m 36. A parabolic dish antenna has a diameter of 1 m. The maximum possible (ideal) gain the antenna at a wavelength of 3.14 cm is (A) 20 dB (B) 30 dB (C) 40 dB (D) 50 dB 37. A transmitting antenna with a 300 MHz carrier frequency produces 2 kW of power both antennas has unity power gain, the power received by another antenna a distance of 1 km is (A) 11.8 mW (B) 18.4 W (C) 18.4 μW (D) 12.7 μW 38. A thin dipole antenna is λ/15 long. If its loss resistance is 1.2 Ω, the efficiency is (A) 41.1% (B) 59% (C) 74.5% (D) 25.5% 39. An antenna can be modelled as an electric dipole of length 4 m at 3 MHz. if currer uniform over its length, then radiation resistance of the antenna is (A) 1.974 Ω (B) 1.263 Ω (C) 2.186 Ω (D) 2.693 Ω 40. For a Hertz dipole antenna, the half power beam width (HPBW) in the E-plane is (A) 360° (B) 180° (C) 90° (D) 45° 41. An ideal pulse radar receiver (A) should have very large bandwidth (B) should have very small bandwidth (C) both (A) and (B) (D) none of these 42. In case the ratio of the antenna diameter to the wavelength in a radar system is his likely not to result in (A) increased capture area (B) good target discrimination (C) difficult target acquisition (D) large maximum range 43. Radar detection is limited to line of sight because (A) of curvature of the earth (B) the waves are not reflected by the ionosphere (C) long wavelengths are used

44.	ante		is power		-			or of 16 and the
	(A)	16	(B)	8	(C)	4	(D)	2.828
45.	tran		was a p	ulsed carrier				12 MHz. If the 5 @ 400 Hz, the
	(A)	Frequency co	mponen	t at 400 Hz				
	(B)	Frequency sp	read ove	er the whole l	F bandv	vidth		
	(C)	Dc or average	value o	of the IF				
	(D)	RF signals at	10 GHz	and 12 MHz	1			
46.		ne average po smitter is 1000					nd the peal	k power of the
	(A)	0.002	(B)	0.02	(C)	0.001	(D)	0.01
47.		ar receives an ge of the target		m a target 20	0μs after	sending t	he signal. T	he approximate
	(A)	300 m	(B)	3000 m	(C)	600 m	(D)	6000 m
48.	In p	recipitation mo	de, how	often are NV	WS radar	images up	dates:	
	(A)	every 5 secon	ds		(B)	every 50	seconds	
	(C)	every minute			(D)	every 5 m	inutes	
49.	Rad	ar beacons are	used for					
	(A)	Target identi	fication					
	(B)	Navigation						
	(C)	Causing sign	ificant e	xtensions of	the maxi	mum rang	e	
	(D)	All the above						
50.	In a	radar in case	the retu	rn echo arriv	es after t	the allowed	pulse inter	val, then
	(A)	It will not be						
	(B)	The receiver						
	(C)		200		n of the	transmitte	r	
	(D)	It may interface with the operation of the transmitter The target will appear closer than it really is						

	value of the emi				f –4 and desen	sitivity of 50, th	hen the
	(A) 50 kΩ			(B)	$0.98~\mathrm{k}\Omega$		
	(C) 50 MΩ			(D)	$0.98~\text{M}\Omega$		
52.	The voltage gar respectively is 1						edback
	(A) 4%	(B)	5%	(C)	20%	(D) 80%	
53.	An amplifier us frequency of 6- provides a lowe The lower (3 dB	Hz due r cut-off (3	to coupling c dB) frequenc	apacitory y due to	r. The emitter emitter degen	bypass capacit	or also
	(A) 100 Hz			(B)	$128~\mathrm{Hz}$		
	(C) 156 Hz			(D)	$244~\mathrm{Hz}$		
54.	The input volta from 10 mA to 1						
	(A) $1 \text{ k}\Omega$	(B)	$1.5~\mathrm{k}\Omega$	(C)	$1.66~\mathrm{M}\Omega$	(D) 2.5 Mg	2
55.	A dc-dc convert What is the cur of 12 V?						
	(A) 0.1 A	(B)	2.0 A	(C)	2.5 A	(D) 10 A	
56.	What is the va I _{DSS} = 40 mA an			f bias a	n N channel J	FET with V _p =	–10 V,
	(A) 250Ω			(B)	500Ω		
	(C) 750 Ω			(D)	$1500~\Omega$		
57.	A half wave re 325 V peak val- value of the cur	ue and the				fiers an A.C vol	
	(A) 295.4 mA			(B)	94 mA		
	(C) 147.7 mA			(D)	208 mA		
138				2			

51. If a common emitter amplifier with an emitter resistance Re has an overall Trans

A zener diode in the circuit shown in the figure is has a knee current of 5 mA, and a 58. maximum allowed power dissipation of 300 mW. What are the minimum and maximum load currents that can be drawn safely from the circuit, keeping the output voltage vo constant at 6 V?

- 0 mA, 180 mA (A)
- 10 mA, 55 mA

- 5 mA, 110 mA (B)
- 60 mA, 180 mA
- The maximum power that can be transferred to the load resistor RL from the voltage 59. source in the figure is

- 1 W (A)
- 10 W (B)
- (C) 0.25 W
- (D) 0.5 W
- The circuit using a BJT with $\beta = 50$ and $V_{BE}=0.7$ V is shown in the figure. The base current IB and collector voltage Vc are respectively

- 43 uA and 11.4 V (A)
- (C) 45 μA and 11 V

- 40 uA and 16 V
- (D) 50 μA and 10 V

	(A) $31.6 \ \mu W$ (B) $316.22 \ \mu W$ (C) $0.316 \ mW$ (D) $31.6 \ mW$	
62.	A GaAs optical source with a refractive index of 3.6 is coupled to a silica fibre that he a refractive index of 1.48. If the fibre end and source are in close physical contact then the Fresnel reflection at the interface is	
	(A) 2.3 (B) 1.9 (C) 1.5 (D) 0.174	
63.	A glass fibre has refractive indices n_1 of 1.5 and n_2 of 1. Assuming $c=3\times 10^8\text{m/s}$ th multipath time dispersion will be	ne
	(A) 2.5 ns/m (B) $2.55 \mu\text{s/m}$ (C) 5ns/m (D) $55 \mu\text{s/m}$	
64.	A certain optical fibre has refractive index of clad $(n_1)=1.4$ and that of core $(n_2)=1.0$ Its numerical aperture will be	5.
	(A) 0.8575 (B) 0.9260 (C) 0.3500 (D) 0.15885	
65.	What is the responsitivity of the photodiode having quantum efficiency of 65% with photons of energy 1.5×10 ⁻¹⁹ J incident upon it?	th
	(A) 0.832 AW^{-1} (B) 0.714 AW^{-1} (C) 0.694 AW^{-1} (D) 0.452 AW^{-1}	
66.	The normalized frequency of a step index fibre is 28 and 1300 nm wavelength. Whis the total number (approximately) of guided modes that can be supported by the fibre?	
	(A) 50 (B) 200 (C) 400 (D) 800	
67.	For a MMS fibre n_1 =1.5 and n_2 =1.46, than the critical angle and acceptance angle we be	ill
	(A) 20.12° and 76.73° (B) 76.73° and 20.12°	
	(C) 29.12° and 78.73° (D) 78.73° and 29.12°	
68.	Photons of energy 1.53 \times 10 ⁻¹⁹ J are incident on a photo diode which has responsivity of 0.65 A/W. If the optical power level is 10 μ W, then the generated photograph current is	
	(A) $2.3 \mu\text{A}$ (B) $6.5 \mu\text{A}$ (C) $6.3 \mu\text{A}$ (D) $6.1 \mu\text{A}$	

For a single mode optical cable with $0.25~\mathrm{dB/km}$ loss, the optical power 100 km from a

61.

138

0.1 mW source will be

69.	A si	ingle mode opt	ical fil	bre has a be	at leng	th of 8 cm a	t 1300	nm, then	the
		fringence will be							
	(A)	3.61×10^{-5}	(B)	1.89×10^8	(C)	6.55×10^{-8}	(D)	1.63 × 10-	5
70.	radi	ouble hetro junc ative and non-r e current is 40 r	adiativ	e recombinati	ion time	es of 30 and 10	00 ns, re		
	(A)	231 ns	(B)	23.1 ns	(C)	2.31 ns	(D)	0.231 ns	
71.	Wha	at is the nyquist	rate fo	or the signal x	$(t) = \cos \theta$	2000πt+3sin60	00nt?		
	(A)	$2~\mathrm{kHz}$	(B)	4 kHz	(C)	$12~\mathrm{kHz}$	(D)	6 kHz	
72.	Whi	ch one of the fol	lowing	is correct? En	ergy of	a power signal	is		
	(A)	finite			(B)	0			
	(C)	infinite			(D)	between 1 an	d 2		
73.		stem has poles approximate pl					Iz, 100	Hz and 200	Hz
	(A)	-90°	(B)	0°	(C)	90°	(D)	-180°	
74.	sign	kHz sinusoidal al is passed the out signal has th	rough a	an ideal low-p					
	(A)	0 Hz	(B)	$0.75~\mathrm{kHz}$	(C)	$0.5~\mathrm{kHz}$	(D)	$0.25~\mathrm{kHz}$	
75.	Wha	at is the period	of the s	inusoidal sign	al x(n)=	5cos[0.2πn]?			
	(A)	10	(B)	5	(C)	1	(D)	0	
76.	Con	sider the follow	ing sta	tements					
	(i)	If S ₁ and S ₂ ar	e linea	r, the S is line	ar				
	(ii)	If S_1 and S_2 ar	e non-	linear, the S is	non-lin	near			
	(iii)	If S ₁ and S ₂ ar							
	(iv)	If S ₁ and S ₂ ar		in-varient, the	e S is in	-varient			
	Tru	e statements ar	e,		70220				
	(A)	(i), (ii), (iii)			(B)	(ii), (iii), (iv)			
	(C)	(i), (iii), (iv)			(D)	All			

77.		sinusoidal signa uency, for which			period !	N=10 samples. T	The sn	nallest angular
	(A)	1/10 rad/cycle			(B)	10 rad/cycle		
	(C)	5 rad/cycle			(D)	п/5 rad/cycle		
78.	If a as,	function f(t) u(t)	is shi	fted to right s	side by t	o, then the function	tion ca	in be expressed
	(A)	f(t- t0) u(t)			(B)	f(t) u(t- t ₀)		
	(C)	f(t- t ₀) u(t- t ₀)			(D)	$f(t+t_0)\ u(t+t_0)$		
79.	The of V	-	f the f	full wave recti	fied sine	e wave with peri	od n,	and peak value
	(A)	$0.707 \ V_{\dot{m}}$	(B)	0.500 V _m	(C)	$0.637\;V_{m}$	(D)	$0.318\;V_{\rm m}$
80.		rectangular wa pe of the resultin			T ₁ and	T ₂ second are co	nvolv	ed. What is the
	(A)	Triangular			(B)	Rectangular		
	(C)	Trapezoidal			(D)	Semi-circular		
81.		vpical number o uit is	f diffu	sions used in	making	g epitaxial diffus	sed sil	icon integrated
	(A)	1	(B)	2	(C)	3	(D)	4
82.	The	gate oxide thick	ness in	n the MOS cap	oacitor is	s		
	(A)	50 nm	(B)	143 nm	(C)	350 nm	(D)	1 μm
83.	The	maximum deple	tion la	yer width in s	silicon is			
	(A)	$0.143~\mu\text{m}$			(B)	$0.857~\mu\mathrm{m}$		
	(C)	1 μm			(D)	1.143 µm		
84.	and	a depth of 1 µr	n. If t	he dopant der	sity in	OS transistor hat the soured is 10 is approximate.	¹⁹ /cm ³ ,	
	(A)	107	(B)	100	(C)	10	(D)	0

85.	5. In the NMOS inverter							
	(A) The driver and active load are enhancement	The driver and active load are enhancement type						
	(B) The driver and is enhancement type and los) The driver and is enhancement type and load depletion type						
	(C) The drive is depletion type and load enhance	C) The drive is depletion type and load enhancement type						
	(D) Both driver and load are depletion type							
86.	6. A depletion type NMOS is operated in enhancement of the Number of the							
	(A) 1 V (B) 3 V (C)	4 V (D) 7 V						
87.	. Electron mobility and life time in a semi-corespectively 0.36 m²/(Vs) and 340 μs . The diffusion	nductor at room temperature are n length is						
	(A) 3.13 nm (B) 1.77 nm (C)	3.55 nm (D) 3.13 nm						
88.	An intrinsic semi-conductor with energy gap 1 temperature 200 K. Another intrinsic semi-conductor concentration N at temperature 600 K. What is semiconductor?	uctor has the same value of carrier						
	(A) $(1/3) \text{ eV}$ (B) $(3/2) \text{ eV}$ (C)	3 eV (D) 9 eV						
89.	Isolation diffusion in a monolithic IC creates corregion between the isolation islands of the order of							
	(A) $10^{15} \mathrm{cm}^{-3}$ (B) $10^{20} \mathrm{cm}^{-3}$ (C)	$10^{25}\mathrm{cm}^{-3}$ (D) $10^{35}\mathrm{cm}^{-3}$						
90.	. The chemical reaction involved in epitaxial gr temperature of about	owth in IC chips takes place at a						
	(A) 500°C (B) 800°C (C)	1200°C (D) 2000°C						
91.	. The number of bits required to store a 256×256 i	mage with 32 gray levels						
		327680 bits						
	(C) 1896 bits (D)	4567 bits						
92.	. Intensity range of 8 bit pixel image is							
	(A) 0 to 7 (B) 0 to 15 (C)	0 to 31 (D) 0 to 255						
93.	The effect, caused by the use of an insufficient nu of a digital image is called	umber of gray levels in smooth areas						
	(A) false countering (B)	gray level slicing						
	(C) bit plane (D)	thinning						

	(D) ($0 < i(x,y) < \infty & 0$) < r(x,	y) < 1					
96.	Consider an image of size $M \times N$ with 64 gray levels. The total number of bits required to store this digitizes image is								
	(A)	$M\times N\times 64$	(B)	$M\times N\times 63$	(C)	$M\times N\times 6$	(D)	$M \times N \times 8$	
97.	A pixel P at coordinates (x,y) has four horizontal and vertical neighbours whose coordinates are given by								
	(A) $(x-1, y-1), (x-1,y), (x,y-1), (x,y+1)$								
	(B) $(x+1, y), (x-1,y), (x,y+1), (x,y-1)$								
	(C) $(x-1, y+1), (x-1,y), (x,y-1), (x,y-1)$								
	(D) $(x+1, y-1), (x+1,y), (x,y+1), (x-1,y+1)$								
98.	An image of size 1024×1024 pixels in which the intensity of each pixel is an 8-bi quantity requires the storage space (if not compressed)								
	(A)	1 KB	(B)	1 MB	(C)	2 KB	(D)	2 MB	
99.	In 8-distance measurement system distance between centre pixel and corner pixel is								
	(A)	2 unit	(B)	1 unit	(C)	1.5 unit	(D)	1.75 unit	
100.	The D8 distance (chess board distance) between p and q with coordinates (x, y), (s, t is defined as								
	(A) (x-s)+(y-t)				(B)	(B) max(x-s , y-t)			
	(C)	$[(x-s)+(y-t)]^2$			(D)	min (x-s ,	y-t)		

sharpening

digitization

(B)

(D)

An image function f(x,y) is characterized by f(x,y)=i(x,y) r(x,y) where

Sampling of an image required for

(A) $0 \le i(x,y) \le 1 & 0 \le r(x,y) \le \infty$

(B) 0 < i(x,y) < 1 & 0 < r(x,y) < 1

(C) $0 < i(x,y) < \infty & 0 < r(x,y) < \infty$

quantization

smoothing

94.

95.

138

(A)

(C)