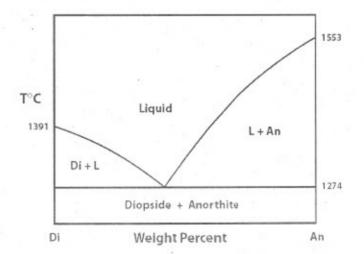
1.		e boundary between — coir sent on Earth	ncides	with major changes in the life forms
	(A)	Precambrian-cambrian	(B)	Cretaceous-tertiary
	(C)	Archean-proterzoic	(D)	Pliestocene-holocene
2.		forms with the crest trending rough	nly pa	rallel to the net sediment transport
	(A)	Linear dune	(B)	Longitudinal dune
	(C)	Seif dune	(D)	Parabolic dune
3.	The	tonalite-trondhjemite-granodiorite m	agmati	ism ended at — boundary.
	(A)	Precambrian-cambrian	(B)	Cretaceous-tertiary
	(C)	Archean-proterzoic	(D)	Paleozoic-mesozoic
4.	Eps	ilon cross-stratification is common in		
	(A)	Marine environment	(B)	Fluvial environment
	(C)	Lacustrine environment	(D)	Aeolian environment
5.	Fore	eland basins are associated with		
	(A)	Crustal extension	(B)	Strike slip faults
	(C)	Thrusting	(D)	Thermal contraction
6.	Maj	or evolution of Atmospheric oxygen in	Earth	took place during
	(A)	3500-3700 million years ago	(B)	2100-2200 million years ago
	(C)	540 million years ago	(D)	200 million years ago
7.	SEL	DEX type ore deposits are not older tha	ın 1.9	Ga, this is because of
	(A)	Widespread sea floor spreading after	1.9 G	a
	(B)	Widespread granite plutonism in con	tinent	
	(C)	Evolution of atmospheric oxygen and	subse	quent oxygenation of ocean water
	(D)	Increase of salinity in sea water		
8.	Den	sity driven currents tends to produce		
	(A)	Coarsening upward sequence	(B)	Fining upward sequence
	(C)	Thickening upward sequence	(D)	Amalgamated sequence
306/	110	2		

9.		nitectures of fluvial facies of post-Devo Devonian time. This change is due to	onian	are distinctly different from that of
	(A)	Climate change during Devonian peri	od	
	(B)	Global sea level rise after Devonian		
	(C)	Evolution and proliferation of land p era and subsequent stabilization of flo		
	(D)	Evolution of atmospheric oxygen		
10.	Qua	rtzite-limestone litho-assemblages are	chara	cteristics of
	(A)	Intracratonic basin	(B)	Foreland basin
	(C)	Back arc basin	(D)	Passive continental margin basin
11.	Swa	ley cross stratification is characteristic	s of	
	(A)	Storm deposits in shallow marine con	dition	i.
	(B)	Storm deposits in deep marine condit	ion	
	(C) ·	Turbidity current induced deposits		
	(D)	Sheet flood facies in an alluvial basin		
12.	Ores	s of Cr, Ni, Pt, Au are associated with		
	(A)	Mafic-ultramafic igneous rocks	(B)	Intermediate igneous rocks
	(C)	Felsic igneous rocks	(D)	Sandstones
13.	Ores	s of Li, Be, Cs associated with		
	(A)	Gabbro	(B)	Diorite
	(C)	Granite-pegmatite pluton	(D)	Acid volcanic rocks
14.	Und	ler isobaric (i.e. equal pressure) conditi	on, H	O solubility is highest in
	(A)	Granitic magma	(B)	Andesitic magma
	(C)	Basaltic magma	(D)	Ultrabasic magma
15.		ase you are doing reconnaissance geod ted Sn deposit, your most preferred san		
	(A)	Residual soil		
	(B)	Stream sediment (fine fraction)		
	(C)	Stream sediment (coarse fraction)		
	(D)	Stream sediment (heavy mineral frac	tion)	

3


16.	For	locating Nb-Ta deposit, one should targ	et fol	lowing geological terrain
	(A)	Sedimentary basin	(B)	Mafic-ultra mafic igneous terrain
	(C)	Granite batholith	(D)	Proterozoic fold belts
17.	Whi	ch one of the following group represents	s the	rare metals?
	(A)	Sn-W-Mo	(B)	Li-Be-Nb
	(C)	Cu-Pb-Zn	(D)	Ce-Nd-Sm
18.		a steeply dipping vein type deposit, t mation method would be	he m	ost preferred method of ore reserve
	(A)	Planar method with uniform area of in	ıfluer	nce
	(B)	Polygonal method		
	(C)	Triangular method		
	(D)	Cross sectional method		
19.	Porp	phyry type Cu-Mo-(Sn-W) are associated	l with	following tectonic setting
	(A)	Divergent plate margin	(B)	Conservative plate margin
	(C)	Collisional plate margin	(D)	Plate interior
20.	Diar	nond deposits are associated with		
	(A)	Granitic intrusions	(B)	Kimberlite pipes
	(C)	Carbonatite	(D)	Komatiite
21.		ch one of the following pairs does not formblages?	orm e	exsolution intergrowth in ore mineral
	(A)	chalcopyrite-sphalerite	(B)	magnetite-ilmenite
	(C)	pyrite-pyrrhotite	(D)	chalcopyrite-cubanite
22.	Mos	t economic iron deposits (BIF) were dep	osite	d during
	(A)	1000-670 ma	(B)	3700-3500 ma
	(C)	2600-1850 ma	(D)	100-150 ma
23.	Stud	dy of alteration assemblages yield best	resul	ts in case of geochemical exploration
	(A)	Porphyry type hydrothermal deposits	(B)	VMS-SEDEX deposits
	(C)	Stratiform deposits	(D)	Orthomagmatic deposits

24.	Whic	h one of the following was NOT the ma	ijor so	ource of heat in the primordial earth?
	(A)	Decay of short-lived radioactive isotop	es	
	(B)	Decay of long-lived radioactive isotope	S	
	(C)	Impact of planetesimals		
	(D)	Energy from the sun		
25.		rals whose fields of stability on a P-T non-hydrostatic stress are described as		am are extended on the introduction
	(A)	Stress minerals	(B)	Anti-Stress minerals
	(C)	Elastic minerals	(D) .	Plastic minerals
26.	Stres	s minerals are characterized by		
	(i)	High packing index of crystal lattice	(ii)	Low molar volume
	(iii)	High density	(iv)	Equidimensional habit
	(A)	(i) and (iii) only	(B)	(i) and (ii) only
	(C)	(i), (ii) and (iii) only	(D)	(ii), (iii) and (iv) only
27.	Whic	h trace elements can substitute the r	najor	ions present in M1 and M2 sites of
	(A)	Ba and Rb	(B)	U and Th
	(C)	Nb and Sr	(D)	Ni and Cr
28.	Serp	entinites and spilites are characteristic	es of v	which one of the following settings?
	(A)	Continental collision zones	(B)	Along shallow faults
	(C)	Mid-ocean ridges	(D)	Mid-continental regions
29.		major difference between rock de atory and rock deformation that occur-		
	(A)	The temperatures are much lower in l	abora	tory experiments than in nature
	(B)	The pressures are much lower in labor	ratory	experiments than in nature
	(C)	The time of deformation is much shature	orter	in laboratory experiments than in
	(D)	Real rocks are not used in laboratory	experi	iments as they are in nature
30.	S- or	Z-shaped inclusion trails in garnets in	dicate	
	(A)	Syn-tectonic crystallization	(B)	Pre-tectonic crystallization
	(C)	Post-tectonic crystallization	(D)	Magmatic crystallization

31.	Whi	ich of the following statements about metam	orphism of shale is false?
	(A)	With increasing metamorphism, the clay n	ninerals breakdown to form micas
	(B)	With increasing metamorphism, the grain	size of the minerals gets smaller
	(C)	With increasing metamorphism, foliation	levelops
	(D)	With increasing metamorphism, the amou	nt of water decreases
32.	And	overturned fold is characterized by	
	(A)	Two limbs at right angles to one another	
	(B)	Two limbs dipping in the same direction -	with one tilted beyond vertical
	(C)	Two limbs dipping in opposite directions	
	(D)	Two limbs not parallel to each other	
33.	How	w do rock particles move during the passage	of a P wave through the rock?
	(A)	Back and forth parallel to the direction of	wave travel
	(B)	Back and forth perpendicular to the direct	ion of wave travel
	(C)	In a rolling circular motion	
	(D)	The particles do not move	
34.	She	ear strain is measured by	
	(A).	Change in length of a line (B)	Change in angle between two lines
	(C)	Displacement of a line (D)	Bending of line
35.	If th	he net slip of a fault is parallel to the trace of	the bedding on the fault plane then
	(A)	Strike separation is zero	
	(B)	Dip separation is zero	
	(C)	Both strike and dip separations are zero	
	(D)	Both strike and dip separations are nonzer	ro
36.	The	e intensity of diffracted X-ray depends on	
	(A)	Electron density (B)	Atomic nuclei
	(C)	Chemical bonds (D)	Unit cell volume
37.	Poly	ymorphic transformation does NOT involve o	hange in
	(A)	Crystal class (B)	Chemical composition
	(C)	Density (D)	Refractive index

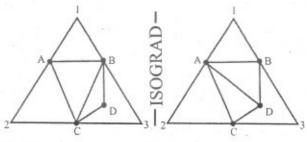
- 38. Minerals belonging to a solid solution series have
 - (A) Similar crystal structure
- (B) Same physical properties
- (C) Different crystal structure
- (D) Similar chemical composition
- 39. The abundance of elements in the Earth's mantle is about 1.8 times the primitive chondrites. This is due to
 - (A) Formation of the Moon from Earth
 - (B) Early differentiation of Earth to core and mantle
 - (C) Later addition of elements by meteorite impacts
 - (D) Abundance of elements in bulk earth is about 1.8 times the primitive chondrites

Study the figure given below and answer the following two questions.

- 40. A melt of composition 20% diopside + 80 % anorthite at 1550 °C undergoes cooling and crystallization. Which of the following minerals will be formed as phenocryst?
 - (A) Diopside

(B) Enstatite

(C) Forsterite


- (D) Anorthite
- 41. A rock consisting of 70% diopside + 30 % anorthite is heated. At what temperature it will start melting?
 - (A) 1553°c

(B) 1391°c

(C) 1300°c

- (D) 1274°c
- 42. The Andes Mountains of South America are a result of which type of plate boundary?
 - (A) Ocean-continent convergence
- (B) Ocean-ocean convergence
- (C) Continent-continent convergence
- (D) Divergent

The change in the compatibility diagram for a ternary system across the metamorphic 43. isograd is depicted schematically. The governing reaction at the isograd is

A+B=C+D(A)

(B) B + D = A + C

A + B + C = A + C + D(C)

- (D) B + C = A + D
- Out of the following which of the point groups are not possible? 44.
 - (A) 222
- (B) 446
- (C) 334
- (D) 422
- The change in the plagioclase composition from albite to oligoclase indicate the 45. transition from
 - (A) Amphibolite → granulite
- (B) Greenschist → amphibolite
- (C) Blueschist → eclogite

- (D) Greenschist → blueschist
- Clay minerals are common examples of -46. — silicate structures.
 - (A) Framework

(B) Single chains

Sheet silicates

- (D) Isolated tetrahedral
- 47. Spinifex texture is characteristic of
 - (A) Komatiite
- (B) Gabbro
- (C) Andesite
- (D) Basalt
- Which one of the following minerals is useful to determine the initial 87Sr/86Sr ratio of 48. a granodiorite rock?
 - (A) Plagioclase
- (B) Orthoclase
- Biotite (C)
- (D) Hornblende
- Negative Eu anomaly will be formed in the residual magma by fractional crystallization of
 - (A) Olivine
- (B) orthopyroxene (C) clinopyroxene (D) plagioclase
- A drainage pattern whose plan resembles ring-like structure is called as
 - (A) Dendritic
- (B) Trellis
- (C) Annular
- (D) Radial

51.	The	two words in Bin	omia	l nomenclature d	esign	ate		
	(A)	Order & family			(B)	Family & genus	S	
	(C)	Genus & species	5		(D)	Phylum & class	3	
52.	Cora	al reefs are genera	ally fo	ound in				
	(A)	Polar region			(B)	Tropical region		
	(C)	Sub polar region	1		(D)	All regions		
53.	Brai	in and Cranial ca	pacity	y of humans rang	ges fro	om		
	(A)	450 cc to 600 cc			(B)	1200 cc to 1250	сс	
	(C)	1350 cc to 2000	сс		(D)	2000 cc to 3500	сс	
54.	Foss	sil Ammonites ind	licate	ре	riod o	of time.		
	(A)	Cretaceous	(B)	Tertiary	(C)	Carboniferous	(D)	Cambrian
55.	Petr	ified wood is an e	xamı	ole of				
	(A)	Encrustation	(B)	Substitution	(C)	Alteration	(D)	Desiccation
56.	Enti	renched meanders	s are	developed due to)			
	(A)			Retrogradation		Degradation	(D)	Rejuvination
57.	The	age of Muth quar	tzite	is				
	(A)	Silurian	(B)	Devonian	(C)	Ordovician	(D)	Cambrian
58.		nity is the amou kilogram of sea w					and h	ence, normally
	(A)	25	(B)	30	(C)	35	(D)	40
59.	Mor	e than 50% of the	ocea	n bottom is cover	red w	ith ———	sedin	nents.
	(A)	Lithogenous	(B)	Hydrogenous	(C)	Biogenous	(D)	Cosmogenous
60.	Her	cynian or Varisca	n Or	ogeny took place	durin	ıg		
	(A)	Silurian			(B)	Devonian		
	(C)	Permo carbonife	erous		(D)	Jurassic		
61.	Che	mical weathering	is m	ore effective in —		regions		
	(A)	Warm & humid			(B)	Arid		
	(C)	Semi arid			(D)	Arid & semi ar	id	

62.	Peri	mian is represented in Spiti region by	y		
	(A)	Kanawar group	(B)	Kuling system	
	(C)	Agglomerate shale	(D)	Tal shale	
63.	Dec	can volcanic flow started at the end o	of ——	period.	
	(A)	Permian (B) Triassic	(C)	Jurassic (D) Cretaceous	
64.	Inve	ertebrates of ———— group mov	e with fa	astest speed.	
	(A)	Cephalopoda	(B)	Echinodermata	
	(C)	Gastropoda	(D)	Brachiopoda	
65.	Whi	ich of the following energy resources	is renew	able?	
	(A)	Coal	(B)	Hydroelectric power	
	(C)	Nuclear energy	(D)	Petroleum	
66.	Whi	ich one of the rock types is the best ca	ap rock f	for oil and gas reservoirs?	
	(A)	Evaporites (B) Limestone	(C)	Shale (D) Sandstone	
67.	Whi	ich of the following types of global ch	ange is u	inidirectional (i.e. not reversible)?	
	(A)	Orogenic uplift	(B)	Rock cycle	
	(C)	Evolution of life on Earth	(D)	Global warming	
68.	Whi	ich of the following may not cause me	elting in	mantle?	
	(A)	Subduction of water bearing miner	als in m	antle	
	(B)	Rise of plume from core-mantle bou	ındary		
	(C)	Divergence of plate at mid-oceanic	ridges		
	(D)	Convection of mantle			
69.		adioactive isotope decays with a me	an life o	of 10 hours. Half of its atoms would	
	(A)	5 hours (B) 10 hours	(C)	1.44 hours (D) 6.93 hours	
70.	repe	experiment to determine elemental eated 3 times (i) 10.12 ppm (ii) 10.11 ppm, it means that the experimental	ppm (iii)	10.13 ppm; if actual concentration is	
	(A)	More precise than accurate			
	(B)	More accurate than precise			
	(C)	Correct within the uncertainty of the	ne exper	iment	
	(D)	Correct within the errors of measur	rement		

- 71. Garnet usually forms under high pressure and temperature conditions. A geologist reports a garnet rich rock type from a field area. It means
 (A) That rock is under high pressure and temperature conditions when the geologist discovered it
 (B) Garnet is in metastable condition
 (C) The mineral reported as garnet is not a garnet
 (D) Thermodynamically the rock is in equilibrium conditions
 72. A rock dated with Rb-Sr method yields an age of 550 Ma, the same rock when dated
- 72. A rock dated with Rb-Sr method yields an age of 550 Ma, the same rock when dated with Sm-Nd method yields and age of 2.5 Ga. One of the likely explanation for these results is
 - (A) Rb- Sr method does not give a correct age
 - (B) Sm-Nd method does not give correct age
 - (C) 550 Ma is age of metamorphism while 2.5 Ga is age of protolith formation
 - (D) This rock can not be dated by any method
- 73. Comparatively higher concentrations of incompatible elements are expected in a rock which formed by
 - (A) Small degree of partial melting of upper mantle
 - (B) Large degree of partial melting of upper mantle
 - (C) Small degree of partial melting of pre-existing crustal rock
 - (D) Residue of melting in upper mantle
- 74. A liquid remaining after progressive fractionation of early formed crystals from a basaltic melt is likely to be enriched in
 - (A) K and REE
- (B) Ca and Mg
- (C) Mg and Fe
- (D) Cr and Ni
- 75. A granulite facies rock is usually characterized by dry mineral assemblage because
 - (A) With progressive metamorphism metamorphic reactions remove all the water
 - (B) Original protolith does not contain any water bearing minerals
 - (C) Granulite facies metamorphism take place before the amphibolites facies in prograde sequence
 - (D) Igneous rocks are protoliths of these rocks
- 76. Two rocks metamorphosed at same temperature pressure conditions have different mineral assemblages. This may mean that

11

- (A) They belong to different facies
- (B) They have different bulk compositions
- (C) They have different tectonic settings
- (D) They are metamorphosed at different depths

77.	A nı	ucleus decays by alpha decay. The daug	hter	would have	
	(A)	Mass number 4 less than parent but s	same	atomic number	
	(B)	Same mass number and same atomic	num	ber	
	(C)	Atomic number less by 2 and same m	ass n	umber as parent	
	(D)	Atomic number less by 2 and mass nu	ımber	less by 4 compared to parent	
78.	Dur	ing β^- decay of a nucleus			
	(A)	A proton gets converted to a neutron			
	(B)	A neutron gets converted to a proton			
	(C)	An outer electron is captured by nucle	eus		
	(D)	No change takes place in proton or ne	utron	number	
79.	Foll	owing is one of the shear sense indicate	rs to	help identify shearing in field	
	(A)	c-s fabric	(B)	gneissic bands	
	(C)	upright symmetric folds	(D)	normal faulting	
20	Λ	restal annuana unabangad suban ustatad	1000	Such an aris of matation in aris of	
30.		ystal appears unchanged when rotated			
	(A)	1-fold symmetry	(B)	2-fold symmetry	
	(C)	3-fold symmetry	(D)	4-fold symmetry	
31.		stals that have three 2-fold axes of syn	nmetr	y perpendicular to each other belong	
	to				
	(A)	Monoclinic system	(B)	Triclinic system	
	(C)	Orthorhombic system	(D)	Tetragonal system	
32.	In a	crystal 4 non-parallel faces intersect in	a po	int. Form of these faces is	
	(A)	Prism (B) Pinacoid	(C)	Pyramid (D) Dome	
33.	Di-o	ctahedral micas have			
	(A)	2 cations in octahedral co-ordination			
	(B)	3 cations in octahedral co-ordination			
	(C)	4 cations in octahedral co-ordination			
	(D)	6 cations in octahedral co-ordination			
34.	Diva	alent Ca and monovalent Na substitute	for e	ach other in Plagioclase to give rise to	
		erent members of plagioclase series. The			
	(A)	Incorporation of another monovalent			
	(B)	Keeping one cation site vacant			
	(C)	Simultaneous substitution of Al and S	Si		
	(D)	Creating or breaking one hand with or	no of	the non-hridging overgen	

12

85.	Seis	mic stations around the world have rec	corded	a 'push' as the first motion. It means
	(A)	A single-couple source	(B)	A double-couple source
	(C)	Strong p-wave arrival	(D)	An underground explosion
86.		central distance of 180° equals to apparent of the earth. (radius of the earth is		
	(A)	18000 km (B) 20005 km	(C)	40010 km (D) 180 km
87.	S- w	vaves cannot travel through liquid beca	use	
	(A)	Their velocity is slower than P- waves	s	
	(B)	S-wave travel by shear deformation a	nd liq	uids can not be deformed by shearing
	(C)	Because their amplitudes are larger t	han li	iquids capacity
	(D)	Because they are secondary waves		
88.	Defl	ection of a moving object on Earth's su	rface i	is due to
	(A)	Coriolis force	(B)	Centripetal force
	(C)	Milankovitch force	(D)	Lorentz force
89.	Whi	ch is NOT true for older oceanic floor?		
	(A)	It has comparatively lower heat flow		
	(B)	It is comparatively denser		
	(C)	It is away from mid-oceanic ridges		
. 51	(D)	It is usually in center of the oceans		
90.		mean radius of the Earth is 6371 k		
	(A)	3%	(B)	1%
	(C)	0.03%	(D)	0.007%
91.	An i	sostatically over-compensated mountain	in is li	kely to experience
	(A)	Vertical uplift	(B)	Erosion
	·(C)	Shear	(D)	Gravitational collapse
92.	Whi	ch of the following types of sediments i	s mos	t abundant?
	(A)	Coarse clastics	(B)	Fine clastics
	(C)	Chemical	(D)	Biochemical

93.		ch of the following is an example ronment?	le of	a continental-marine transitional
	(A)	Alluvial	(B)	Continental shelf
	(C)	Deltaic	(D)	Organic reef
94.	Coar	rse clastic material can be transported	into a	deep marine environment by
	(A)	Rivers	(B)	Wind
	(C)	Turbidity currents	(D)	Long shore currents
95.	Mar	ine sediments deposited in water depth	ns gre	ater than 3500 m usually lack
	(A)	Carbonate shells		
	(B)	Silica-rich shells		
	(C)	Fine grained material transported by	the w	rind
	(D)	Cosmogenic sediments		
96.	In w	hich of the following environments wo	uld yo	u expect to find oscillation ripples?
	(A)	Alluvial	(B)	Shore face
	(C)	Deep-sea	(D)	Desert
97.		ch of the following processes is not an elopment of a sedimentary basin?	impo	rtant cause of subsidence during the
	(A)	Cooling and contraction of the crust	(B)	Deposition of sediments
	(C)	Erosion of sediments	(D)	Tectonic down faulting
98.		ch of the following sedimentary envir mud?	ronme	nts is characterized by sand, gravel
	(A)	Active margin beach	(B)	Alluvial fans
	(C)	Glacial	(D)	Deep marine
99.		ich of the following sandstone types thering of a granite?	is mo	st likely to form by the mechanical
	(A)	Quartz arenite	(B)	Litharenite
	(C)	Arkose	(D)	Shale
100.	Whi	ich type of weathering creates clay min	erals?	
	(A)	Dissolution	(B)	Frost wedging
	(C)	Hydrolysis	(D)	Oxidation