ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (GREEN ENERGY TECHNOLOGY)

COURSE CODE: 159

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 159

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Opti	ical fiber is the ex	ample	for				
	(A)	Light reflector	(B)	Light absorber	(C)	Light generator	(D)	Wave guide
2.	Moo	re's law describes	the d	evelopment in				
	(A)	Computer integ	ration		(B)	Device integration	on	
	(C)	Community inte	egratio	on	(D)	Cloud computing	g	
3.		—— is called a	s the l	neart beat of a c	ompi	ater		
	(A)	CPU			(B)	Software		
	(C)	Hardware			(D)	Clock frequency		
4.		force of th	e wind	d maintain the a	altitu	de of the plane		
	(A)	Thrust	(B)	Drag	(C)	Lift	(D)	Acceleration
5.	Lith	ography of mater	ials is	called as				
	(A)	Top down proce	ss		(B)	Scaling process		
	(C)	Bottom up proce	ess		(D)	Bottom scale pro	ocess	
6.	The	speed of sound p	ropaga	ation in the med	ium	is		
	(A)	Amplitude depe	ndent					
	(B)	Phase depender	nt					
	(C)	Frequency and	wavel	ength dependen	t			
	(D)	Density and con	nposit	ion dependent				
7.	An a	alloy is the						
	(A)	Mixture of cryst	tals		(B)	Complete mixtu	re of	solids
	(C)	Mixture of meta	als		(D)	Complete mixtu	re of	dielectrics
8.	Dop	ant is the foreign	atom	that contribute		——upon inclus	sion in	nto crystals
	(A)	Neutrons			(B)	Charge carriers		
	(C)	Electricity			(D)	Magnetic field		
9.	Qua	ntum confinemer	nt of pa	articles results	in the	е		
	(A)	Transport of pa	rticle		(B)	Pauli exclusion	princi	iple
	(C)	Dual nature of	motion	1	(D)	Acceleration to 1	partic	le
10.	Ads	orptions are						
	(A)	3 types	(B)	2 types	(C)	6 types	(D)	4 types

11.	The	wave pattern generated in the laser	cavity i	s called as						
	(A)	Standing wave	(B)	Wave selector						
	(C)	Wave transmitter	(D)	Wave guide						
12.	Refr	ractive index is the measure of								
	(A)	Speed of electrons in medium	(B)	Speed of holes in medium						
	(C)	Speed of light in medium	(D)	Speed of phonons in medium						
13.	The	exchange of electrons during bonding	g in sol	id takes place in the						
	(A)	Ionic bonding	(B)	Hydrogen bonding						
	(C)	Covalent bonding	(D)	Van der wales bonding						
14.	Bonding mechanism of DNA is									
	(A)	Ionic bonding	(B)	Vander wales bonding						
	(C)	Dipole bonding	(D)	Hydrogen bonding						
15.	Inte	erstitial atoms in the crystalline netw	ork is p	positioned at						
	(A)	Lattice sites	(B)	In between the atoms						
	(C)	Above the positions	(D)	Out of the positions						
16.	The difference in the lattice constant of epitaxial layers result in									
	(A)	Strain at the interface	(B)	Relax at the interface						
	(C)	Oxidation at the interface	(D)	Alloying at the interface						
17.	The	state of inter diffusion of materials i	s defin	ed by						
	(A)	Cooke's law (B) Fick's law	(C)	Charles law (D) Fiemen's law						
18.	Opt	ical absorption coefficient is material	ls							
	(A)	Conductivity dependent	(B)	Thickness dependent						
	(C)	Temperature dependent	(D)	Viscosity dependent						
19.	_	energy of solar spectrum is co	onverte	d into electrical energy						
	(A)	Heat energy	(B)	Photon energy						
	(C)	IR energy	(D)	UV-visible energy						
20.	The	brain of a computer is its								
	(A)	Windows software	(B)	Driver software						
	(C)	Windows office	(D)	Application software						

21.	Let.	A be the matrix o	f orde	er m x n, the	n determi	nant of A exi	st if	
	(A)	m > n	(B)	m < n	(C)	m ≠ n	(D)	m = n
22.	The	arithmetic mean	of 3,	5, 7 and y is	100. Wha	at is the value	e of y	
	(A)			385			(D)	485
23.	X -	$\frac{e^x - 1}{x} \text{ is equa}$						
	(A)	-1	(B)	0	(C)	1	(D)	i
24.		n the following ty ginary number or		matrix, the	diagonal	element of wh	nich matri	x must be pure
		Skew - Hermiti			(B)	Symmetric		
	(C)	Hermitian			(D)	Skew Symm	etric	
25.	For	XOR operator ⊕	which	n one is not	correct			
	(A)	$1 \oplus 1 = 0$			(B)	$1 \oplus 0 = 1$		
	(C)	$0\oplus 1=1$			(D)	$0\oplus 0=1$		
26.	Whe	en two vectors A (i) and	B(j) are ort	hnormal	then		
		A(i).B(j)=0				A(i).B(j)=1		
	(C)	$A(i).B(j) = \delta ij$			(D)	A(i).B(j) = 0	00	
				$\int x^2$	x is r	ational		
27.	Con	sider a function f	(x) =	$-x^2$	x is irrat	ional then		
				undefined	x	= 0		
	(A)	$\lim_{x \to a} f(x) = exists$	st for	infinitely m	any 'a'			
	(B)	There is no a for	whic	$ \begin{array}{ccc} \text{ch Lim} & f(x) \\ x \to a \end{array} $) exist			
	(C)	There may be se	ome '	a' for which	$\lim_{x \to a} f($	x) exists, bu	it it is im	possible to say
		without more in	forma	ation				
	(D)	$ \lim_{x \to a} f(x) = exist $	sts on	ly when a =	0			
28.		price of sugar umption by 25%. 10%					will be de	

29.		number is to								, 11, 12}
	(A)	$\frac{1}{3}$	(B)	$\frac{1}{2}$		(C)	$\frac{2}{3}$	(D)	$\frac{5}{6}$	
30.	Whi	ch of the follo	owing is t	he refle	ection o	f the no	$\left(\frac{3}{2},\frac{4}{4}\right)$	through th	ne line v	= - r in
00.			JWIIIG IS U	ile rein	occioii o	t one po	(5'5)	unough u	ic iiiic y	20 111
		x y plane		()	1)		(1 2)		1 1	2)
	(A)	$\left(\frac{3}{5}, \frac{-4}{5}\right)$	(B)	$\left(\frac{-3}{5}\right)$	$\left(\frac{4}{5}\right)$	(C)	$\left(\frac{4}{5}, \frac{3}{5}\right)$	(D)	$\left(\frac{-4}{5}\right)$	$\frac{-3}{5}$
31.		numbers of a		tively 2	20% and	d 50% r	nore than a	third num	ber. The	ratio of
	(A)	2:5	(B)	3:5		(C)	4:5	(D)	6:7	
32.	The	period of sin	(3x) is							
	(A)	2 pi	(B)	$2\frac{\text{pi}}{3}$		(C)	pi 3	(D)	3 рі	
00	Α	-11		460	4	1	4 -4 34-	/m-	-1C	3:00
33.		chool commit mittee that c							iber of	amerent
		10	(B)				2100		15	
34.	The graphs of the two linear equations $ax + by = c$ and $bx - ay = c$ where a , b , c are all not equal to zero									
		Parallel					Perpendic			
	(C)	Intersect at	two poin	ts		(D)	Neither pa	arallel nor	perpend	licular
35.	The	next number	in the se	quence	3, 6, 11	1, 18, 2	7 is			
		34	(B)					(D)	40	
36.	If f	$: x \to 3x^2 - 1$	then $f(2)$	is						
	(A)	3	(B)	9		(C)	11	(D)	13	
37.		rcle has equa						e following	g correct	ly states
		(-2, -1), r =						1 (D)	(2, -1), r = 1

38. A sequence is defined by the recurrence relation $u_{n+1} = p u_n + q$, which of the following would be an expression for u_2

5

(B) $u_2 = 3p^2 + pq + q$ (A) $u_2 = 3p + q$ (D) $u_2 = 9p^2 + 6pq + q^2$

(C) $u_2 = 6p + 2q$

159

39.	Wha	at is the value	of $\int_{-\infty}^{2} x^3 d$	x					
	(A)	15	-1 (B)		(C)	4	(D)	$\frac{17}{4}$	
40.		real number		added to its inv	verse	gives the minimu	ım val	lue of the sur	m.
	(A)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	(B)	2	(C)	i	(D)	1-i	
41.		A sequences no Telemere				c chromatids dur Centrosome		itosis is Kinetochore	
42.		Binding to cy gene express Moves to nuc	nembrane ytosolic r sion cleus and	e receptor and a	rmon i	tion the secondar receptor complex			e
43.		blood cells are Lever	e formed (B)		(C)	Lymph node	(D)	Lungs	
44.	(A)	CA is used as of Oxidizing ag	ent	agent	(B) (D)	Reducing agent Buffering agent			
45.	(A)	otelism is fou Mammals ar Birds, reptil	nd birds	sects	(B) (D)				
46.		T and B and Only T cells	by bindi any othe by bindi	ng to TCA in the er type of cells ng to $V\beta$ doma		ence of antigen pr			le
	(D)	an antigen p Only T cells		g cell ng to CD2 mole	cules				
47.		ch of the follo	wing fore forest	est should have	highe	iomass and prod st biomass turn- Tropical wet for Boreal forest	over ti		m
	(0)	remperate 0	ieciuuou	3 101 650	(D)	Dolear tolest			
48.	Rep (A) (C)	lication of DN DNA polyme DNA Ligase	erase	ied out by	(B) (D)	RNA polymera Actin filament	se		

49.	Dist	ribution of enzyme in micro bodies help	in e	ffective					
	(A)	Translation	(B)	Replication					
	(C)	Photosynthesis	(D)	Metabolism					
50.	Regi	ion in which DNA is wrapped tightly a	round	a cluster of histone protein is called					
	(A)	Chromatin	(B)	Chromosome					
	(C)	Nucleosome	(D)	Nucleoid					
51.	Auto	perine signaling involves							
	(A) Expression of receptors that bind to its own plasma membrane								
	(B) Excretion of receptors that binds to neighboring cells								
	(C) Exocytosis of receptors to neighboring cells of same kind								
	(D)	Internalization of proteins through en	ndocy	tosis					
52.	Whi	ch of the following is an inhibitory neu	rotra	nsmitter?					
	(A)	Acetylcholine	(B)	Acetylcholine esterase					
	(C)	Glutamate	(D)	Glycene					
53.	Slee	ping sickness is causes by							
	(A)	Entamoeba histolytica	(B)	Trichomonas vaginali					
	(C)	Trypanosoma brucei	(D)	Saccharomyces cerevisiae					
54.		ONA analysis if Adenosine constitute leotides then it must be	25%	and Guanine constitute 16% of al					
	(A)	Single stranded DNA							
	(B)	Double stranded DNA							
	(C)	Very short stretch double stranded D	NA						
	(D)	Multi-chromosomal DNA							
55.	Pho	tosynthesis in water bodies is restricte	d to c	ertain depth. This is because					
	(A)	Temperature decrease with depth							
	(B)	Light intensity decrease with depth							
	(C)	Dissolved Co2 is available only to a ce	rtain	depth					
	(D)	Nutrient are available only to a certa	in de	pth					
56.	Org	anism that directly uses Co2 as their so	ole so	urce of carbon are termed as					
	(A)	Autotrophs	(B)	Heterotrophs					
	(C)	Auxotrophs	(D)	Chemotrophs					

57.	When an inorganic molecule other than oxygen accepts hydrogen, the process can be classified as									
	(A)	Aerobic respiration	(B)	Anaerobic respiration						
	(C)	Fermentation	(D)	Catalysis						
58.		erence in host response between applified in the case of	indivi	duals for same infection is nicely						
	(A)	Leishmaniasis	(B)	Plasmodium falciparum						
	(C)	S. Japonicum	(D)	Staphylococcus aureus						
59.	Prot	eins whose binding to DNA acts to pr	resent	transcription are known as						
	(A)	Operators (B) Activators	(C)	Repressor (D) Enhancer						
60.	The	chemical basis of gene imprinting is								
	(A)	Phosphorylation of DNA	(B)	Oxidation of DNA						
	(C)	Glycosylation of DNA	(D)	Methylation of DNA						
61.	Whi	ch of the following oxides is amphote	ric in c	haracter?						
	(A)	CaO (B) CO_2	(C)	SiO_2 (D) SnO_2						
62.	When anhydrous hydrogen fluoride is dissolved in glacial acetic acid									
	(A)	HF remains unionized								
	(B)	$H_2F^{\scriptscriptstyle +}$ and $CH_3COO^{\scriptscriptstyle -}$ are formed								
	(C)	F^- and $CH_3COOH_2^+$ are formed								
	(D)	Acetic anhydrine is formed								
63.	Con	sider the coordination compound, Na	$a_2[Pt(C)]$	$N)_4$]. The Lewis acid is						
	(A)	Na^+ (B) Pt	(C)	Pt^{2+} (D) CN^{-}						
64.	The	reagent commonly used to determine	hardr	ness of water titrimetrically is						
	(A)	Oxalic acid	(B)	Disodium salt O+ EDTA						
	(C)	Sodium citrate	(D)	Sodium thio-sulphate						
65.	In F	e(Co)₅ the Fe⁻c bond possesses								
	(A)		(B)	both s and p characters						
	(C)	ionic character	(D)	s – character only						

66.	The shape of Xe O F_4 is									
	(A) Octahedral	(B)	Pyramidal							
	(C) Square pyramid	(D)	Tetrahedral							
67.	Identify the species with atom in +6 oxid	lation st	tate for the follow	ving						
	(A) $Mn O_4^-$	(B)	$Cr(CN)_{6}^{3-}$							
	(C) $Cr O_2 Cl_2$	(D)	NiF_6^{2-}							
68.	Which element has the highest ionizatio	n energ	y?							
	(A) Mg (B) Ca	(C)	Sr	(D) E	Ba					
69.	The point group symmetry of BrF5 is									
	(A) D_{3n} (B) C_{4v}	(C)	D_{4v}	(D) (C _{3v}					
70.	A sudden jump between second and the associated with the electric configuration		ization energies	of an at	om would be					
	(A) $1s^2 2s^2 2p^6$	(B)	$1s^2 2s^2 2p^6 3s^2$							
	(C) $1s^2 2s^2 2p^6 3s^2 3p^1$	(D)	$1s^2 2s^2 2p^6 3s^2 3p^6$	p^2						
71.	When hydrogen nuclei trap neutrons, th	ey form			10 5					
	(A) Tritum (B) Deuterium	(C)	Beta rays	(D) I	Positron					
72.	Which one of the following species has same bond order?									
	(A) CN^+ and CN^-	(B)	O_2^- and CN^-							
	(C) NO^+ and CN^-	(D)	NO^+ and CN^+							
73.	The carbide which gives propyne upon h	ydrolys	is is							
	(A) Be_2C (B) Mg_2C	(C)	CaC	(D) S	SiC					
74.	In the hydrogenation of oils, the catalyst	ts used	is							
	(A) Nickel (B) Iron	(C)	Platinum	(D) I	Molybdenum					
75.	The pyrimidine base present in DNA are	е								
	(A) Cytosine and Adenine		Cytosine and G							
	(C) Cytosine and Thymine	(D)	Cytosine and U	Tracil						
76.	The kinetic energy of particles of an idea	al gas is	a measure of							
	(A) Density (B) Viscosity	(C)	Temperature	(D) I	Refractive					

77.	In J	oule — Thomso	n expar	nsion				
	(A)	$d_S = 0$	(B)	$d_H = 0$	(C)	$d_E = 0$	(D)	$d_G = 0$
78.	Whi	ch of the follow	ing form	ns a positive	ly charge	d sol?		
	(A)	$Fe(OH)_2$	(B)	As_2S_3	(C)	Au	(D)	Starch
79.		v many EDTA (acid molecul	es are re	quired to make
	(A)	Six	(B)	Three	(C)	One	(D)	Two
80.		at is the multi ns marked a 'st				on NMR spec	ctrum for	the hydrogen
				CH ₃ -C-		Н3		
	(A)	Quartet	(B)	Triplet	(C)	Doublet	(D)	Singlet
81.		ch one of the head transmiss			ed by us	sing stock bri	dge dam	pers on power
	(A)	Sag			(B)	Conductor v	ibration	
	(C)	Line losses			(D)	Mechanical	tension	
82.	Wha	at is buoyant for	rce?					
	(A)	Lateral force	acting o	n a submerg	ed body			
	(B)	Resultant for	e actin	g on a subme	erged bod	ly		
	(C)	Resultant ford	e due t	o water on a	body			
	(D)	Resultant hyd	rostati	c force on a b	ody due	to fluid surrou	ınding it	
83.	A ta	chometer is add	ded to a	servomecha	nism bec	eause		
	(A)	It is easily ad	ustable					
	(B)	It can adjust o	lampin	g				
	(C)	It converts ve	locity of	f the shaft to	a propor	tional d.c. vol	tage	
	(D)	It reduces ste	ady-sta	te error				
84.		simple impuls gram efficiency					ce is 30°.	For maximum
	(No	te: Sin $30^{\circ} = 0.5$, Cos 3	0° = 0.866, S	in 15° = (0.259, Cos 15°	= 0.966)	
	(A)	0.259	(B)	0.75	(C)	0.5	(D)	0.433
159					10			

85.	Hov	can the pow	er supplie	d to a freque	ncy heat	ing system be me	asured	?
	(A)	By dynamo	meter wat	t meter				
	(B)	By inductio	n wattmet	er			30.	
	(C)	By thermoc	ouple type	wattmeter				
	(D)	By moving	iron amme	eter and volt	meter			
86.						d fixed blades of is the degree of re		
	(A)	67%	(B)	60%	(C)	40%	(D)	33%
87.		ch one of the rol system?	e followin	g is not the	criterion	used to select a	a poten	tiometer in a
	(A)	Accuracy	(B)	Noise	(C)	Time response	(D)	Frequency
88.	and		ng the pro			pands from 10 baled is 100KW. W		
	(A)	33.3 KW	(B)	100 KW	(C)	80 KW	(D)	20 KW
89.		elimination tion of pulse			the out	put of an invert	er, wha	at will be the
	(A)	70°	(B)	36°	(C)	60°	(D)	90°
90.						m undergoes a cagauge factor?	change	of 0.15 ohm.
	(A)	4.7	(B)	4.0	(C)	3.5	(D)	2.0
91.	tran		gas is c	completely co		a closed system to internal ene		
	(A)	Isochoric pr	cocess		(B)	Adiabatic proces	38	
	(C)	Isothermal	process		(D)	Free Exapanion		
92.						team raising the		
	(A)	O2 content			(B)	CO2 content for		
	(C)	CO content			(D)	All the above		

93.		ch one of the following set of matererters for CI engines?	erials i	s most commonly used in catalytic						
	(A)	Platinum, palladium and rhodium								
	(B)	Palladium, rhodium and ruthenium								
	(C)	Rhodium, ruthenium and platinum								
	(D)	Ruthenium, platinum and palladium	n							
94.	Magnetically hard materials do not posses which of the following characteristics?									
	(A)	High retentivity	(B)	High coercivity						
	(C)	Strong magnetic reluctance	(D)	Zero differential permeability						
95.		ch one of the following parameters is system?	signific	ant to ascertain chemical equilibrium						
	(A)	Clapeyron relation	(B)	Maxwell relation						
	(C)	Gibbs function	(D)	Helmholtz function						
96.	Qua	artz and BaTiO3 exhibit which of the fo	ollowin	g properties						
	(A)	Magnetostriction	(B)	Ferromagnetism						
	(C)	Piezoelectricity	(D)	Ferroelectricity						
97.	For which one of the following materials, is the Hall coefficient zero?									
	(A)	Insulator	(B)	Intrinsic semiconductor						
	(C)	Metal	(D)	Non-metal						
98.	oper	eversible heat engine rejects 50 per ration. If the engine is reversed and ficient of performance?								
	(A)	1.0 (B) 1,5	(C)	2.0 (D) 2.5						
99.		ich one of the following symptoms plete?	shows	that the combustion is necessarily						
	(A)	Presence of free carbon in exhaust	(B)	Presence of CO in exhaust						
	(C)	Presence of oxygen in exhaust	(D)	Presence of nitrogen in exhaust						
100.	is 4	power input to a 415V, 50HZ, 6 pole, 0KW. The stator losses are 1 KW and ne efficiency of the motor?								
	(A)	92.5% (B) 92%	(C)	90% (D) 88%						