ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (GREEN ENERGY TECHNOLOGY)

COURSE CODE: 159

Register Number :	
	Signature of the Invigilator
	(with date)
COURSE CODE: 159	

.

Max: 400 Marks

Instructions to Candidates:

Time: 2 Hours

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

	(A)	Straight line	(B)	Parabola	(C)	Ellipse	(D)	Hyperbola
		·						
		•	(i 0)	0)				
2.	Ran	k of the matrix	0 i	0 where i is a	n ima	ginary number		•
		1	(B)	•			(T)\	Mak Jadinasi
	(A)	1	(D)		(C)	3	(D)	Not defined
3.		en two vectors A((i) and	B(j) are orthonous	ormal			
					(B)	(, (,		
	(C)	$A(i).B(j) = \delta ij$		·	(D)	None of the abo	ve	
4.	Solu	tion of the differ	ential	equation				
	$\frac{d^2x}{dy^2}$	+x=0, x=0	at y	y=0 and $x=$	l at	$y = \frac{\pi}{2}$		
	(A)	x = sin(y)			(B)	x = cos(y)		
	(C)	x = sin(y) + cos(y)	<i>'</i>)		(D)	$x=\sin^{-1}(y)$	-	
5.	The	product of two n	umbei	rs (0,1) and (1,0)) in a	complex space is		, '
	(A)	0	(B)	1		$\sqrt{-1}$	(D)	None of these
6.	The	function $f(x) = x$	²-x, at	x = 0.5 has				
	(A)	Maxima	(B)		(C)	Saddle point	(D)	Salient point
7.	$\int_{a}^{b} x^{-1}$	$^{1+arepsilon}dx$ where $arepsilon$ –	→ 0 is					
	(A)	$\ln (b/a)$	(B)	0	(C)	1/8	(D)	$b^{\varepsilon} - a^{\varepsilon}$
8.	Eige	on value of $\frac{d^2}{dx^2}$ ($\sin(x)$	is		·		•
	(A)	1			(B)	-1		
	(C)	$\sqrt{-1}$			(D)	Not an eigen va	ılue op	eration
9.	ln (-	-1) is , (ln is nat	ural lo	g)				
	(A)	Not defined	(B)	1	(C)	0	(D)	iπ
150						,		

 $y = x^{-n}$, where n is a positive integer represents

1.

- 10. For two sets A and B, $\overline{A \cup B}$ is
 - (A) $\overline{A} \cup \overline{B}$
- (B) $A \cup B$
- (C) $\overline{A} \cap \overline{B}$
- (D) $A \cap B$

- 11. Derivative of $y = 2^x$ is
 - $(A) \quad \frac{dy}{dx} = x \ 2^{x-1}$

 $(B) \quad \frac{dy}{dx} = \frac{2^{x-1}}{x}$

(C) $\frac{dy}{dx} = 2.3 \log 2. 2^x$

- $(D) \quad \frac{dy}{dx} = -x2^{x-1}$
- 12. Which one is not true for the curve y = a(x-n)2
 - (A) Represent a parabola
 - (B) Vertical line x = n is an axis of symmetry
 - (C) For a > 0 has a minimam y = 0 at x = n
 - (D) Horizondal line y = n is an axis of symmetry
- 13. The equation of a straight line that passes through point A(1,-1) and has a slope equato -1 is
 - $(A) \quad y = -x$
- (B) y = x
- (C) y = 1/x
- (D) y = x + 1
- 14. Root of the equation $x^2 + ix + 2 = 0$, where $i = \sqrt{-1}$ is
 - (A) (-1, 1)
- (B) (i, 1)
- (C) (-2i, i)
- (D) No root exist
- 15. For joint probability $P(A \cap B)$ for two events A and B
 - (A) $P(A \cap B) = P(A) + P(B) P(A \cup B)$
 - (B) $P(A \cap B) = P(A) + P(B) + P(A \cup B)$
 - (C) $P(A \cap B) = P(A)P(B) P(A \cup B)$
 - (D) $P(A \cap B) = P(A) + P(B)$
- 16. Which one list all members of the set $\{x \mid x \text{ is a real number such that } X^2 = 1\}$
 - (A) {}
- (B) {1}
- (C) Infinite
- (D) None of these
- 17. The rate of conductive heat transfer across $1m^2$ of a mild steel plate that has a constant thickness of $5x10^{-3}$ m and a thermal conductivity of 45 W/mK, when the temperature of hot and cold surfaces are 100° C and 99.9° C, is
 - (A) 9 W
- (B) 90 W
- (C) 0.007 W
- (D) 900 W

18.		ch one of the i	followi	ng is correct	for a	selective surfa	ace for	solar the	rmal
	(A)	High absorptiv	ity and	l high emissiv	ity				
	(B)	Low absorptivi	ty and	high emissivi	ty				
	(C)	High absorptiv	ity and	l low emissivi	ty				
·	(D)	Low absorptivi	ty and	low emissivit	y	•			
19.	The	value of solar co	nstant	is		•			
	(A)	1763 W/m ²	(B)	1637 W/m ²	(C)	1367 W/m ²	(D)	1000 W/n	n^2
20.		gnal of 10 V is a load. The voltag				ransmission lin	e, term	inated in a	ı 100
	(A)	1/4	(B)	1/3	(C)	1/2	(D)	1	
21.	The	vanes of a centri	fugal j	pump are gen	erally				
	(A)	Radial			(B)	Curved backw	ard		
	(C)	Curved forward	ì		(D)	Twisted			
00									
22.,	5 k	value of the my ΩV sensitivity, stance of 100 Ω , i	emple	oying a 200		c voltmeter, ha eter movement			
22. ,	5 k	ΩV sensitivity, stance of 100 Ω , i	emple	oying a 200			and h		
23.	5 k resis (A) For	ΩV sensitivity, stance of 100 Ω , i	emples gives (B)	oying a 200 n by 200 Ω ansfer by na	μΑ me (C) tural co	eter movement $200 k \Omega$	and h	aving into $2.5 k\Omega$	ernal
	5 k resis (A) For	ΩV sensitivity, stance of 100 Ω , i 249.9 $k\Omega$	emples gives (B) eat traistic l	oying a 200 n by 200 Ω ansfer by nat ength in Gras	μΑ me (C) tural co	eter movement $200 k \Omega$	and h	aving into $2.5 k\Omega$	ernal
	5 k resis (A) For wha	ΩV sensitivity, stance of 100 Ω , i 249.9 $k\Omega$ calculation of h t is the character	emples gives (B) eat tr ristic less cyline	oying a 200 n by 200 Ω ansfer by nat ength in Gras der	μΑ me (C) tural co	eter movement $200 k \Omega$	and h	aving into $2.5 k\Omega$	ernal
	5 k resis (A) For wha (A)	ΩV sensitivity, stance of 100 Ω , i 249.9 $k\Omega$ calculation of h t is the character Diameter of the	emples gives (B) eat tr ristic le cylindes	oying a 200 n by 200 Ω ansfer by nat ength in Gras der	μΑ me (C) tural co s of nur	eter movement $200 k \Omega$	and h	aving into $2.5 k\Omega$	ernal
	5 k resis (A) For what (A) (B)	ΩV sensitivity, stance of 100 Ω , in 249.9 $k\Omega$ calculation of heat is the character Diameter of the Length of the c	emples gives (B) eat tr ristic less cylinder ylinder of the	oying a 200 n by 200 Ω ansfer by natength in Graster der r base of the cy	μΑ me (C) tural cos of nur	eter movement $200 k\Omega$ onvection from mber?	and h	aving into $2.5 k\Omega$	ernal
	5 k resis (A) For wha (A) (B) (C) (D	ΩV sensitivity, stance of 100 Ω , in 249.9 $k\Omega$ calculation of he is the character Diameter of the Length of the Circumference Half of the circumference	emples gives (B) eat tr ristic les cylindes ylindes of the umfere	oying a 200 n by 200 Ω ansfer by natength in Grass der r base of the cyence of the base	μA me (C) tural co s of nur linder se of the	eter movement $200 k\Omega$ onvection from mber?	and h (D) a horiz	aving into $2.5 k\Omega$	ernal
23.	5 k resis (A) For wha (A) (B) (C) (D	ΩV sensitivity, stance of 100Ω , in $249.9 k\Omega$ calculation of he tries the character Diameter of the Length of the circumference Half of the circumference sider the following stance of the circumference of the ci	emples gives (B) eat training cylinder of the cumference grant state	oying a 200 n by 200 Ω ansfer by nate of the cyence of the base of the cyence of the base of the bas	μΑ me (C) tural cos of nur linder se of the	eter movement $200 k\Omega$ onvection from mber?	and h (D) a horiz	aving into $2.5 k\Omega$	ernal
23.	For what (A) (B) (C) (D	ΩV sensitivity, stance of 100 Ω , in 249.9 $k\Omega$ calculation of heat is the character Diameter of the Length of the Circumference Half of the circumference sider the following perman	emples gives (B) eat trace cylinder of the umferen ng state	oying a 200 n by 200 Ω ansfer by nate of the cyence of the base of the cyence of the base of the bas	μΑ me (C) tural cos of nur linder se of the	eter movement $200 k\Omega$ onvection from mber?	and h (D) a horiz	aving into $2.5 k\Omega$	ernal
23.	For wha (A) (B) (C) (D	ΩV sensitivity, stance of 100Ω , in $249.9 k\Omega$ calculation of he tries the character Diameter of the Length of the circumference Half of the circumference sider the following stance of the circumference of the ci	emples gives (B) eat tr ristic les cylinder of the umferen ng state	oying a 200 n by 200 Ω ansfer by natength in Grass der base of the cyence of the base ements: Electric moment	μA me (C) tural cos of nur linder se of the trets ar	eter movement $200 k\Omega$ onvection from mber?	and h (D) a horiz	aving into $2.5 k\Omega$	ernal
23.	For what (A) (B) (C) (D Const. 2.	ΩV sensitivity, stance of 100Ω , is $249.9 k\Omega$ calculation of he is the character Diameter of the Length of the circumference Half of the circumference sider the following perman electromagnets	emples gives (B) eat traistic less cylinder of the umference umference ent ele	oying a 200 n by 200 Ω ansfer by natength in Grass der r base of the cyence of the base ements: Electric moment	μΑ me (C) tural cos of nur linder se of the trets ar s	eter movement $200 k\Omega$ onvection from mber?	and h (D) a horiz	aving into $2.5 k\Omega$	ernal
23.	5 k resis (A) For wha (A) (B) (C) (D Cons 1. 2. 3. 4.	ΩV sensitivity, stance of 100 Ω , in 249.9 $k\Omega$ calculation of he to is the character Diameter of the Length of the circumference Half of the circumference Half of the circumference sider the following permannel electromagnets wery similar to	emples gives (B) eat traistic less cylinder of the umference ag state ent eless perma ferroel	oying a 200 n by 200 Ω ansfer by natength in Grass der r base of the cyence of the base ements: Electric moment anent magnet ectric materia	μΑ me (C) tural cos of nur linder se of the trets ar s	eter movement $200 k\Omega$ onvection from mber?	and h (D) a horiz	aving into $2.5 k\Omega$	ernal
23.	5 k resis (A) For wha (A) (B) (C) (D Cons 1. 2. 3. 4.	ΩV sensitivity, stance of 100 Ω , in 249.9 $k\Omega$ calculation of heat is the character Diameter of the Length of the Circumference Half of the circumference Half of the circumference sider the following perman electromagnets very similar to similar to anti-	emples gives (B) eat traistic less cylinder of the umference ag state ent eless perma ferroel	oying a 200 n by 200 Ω ansfer by natength in Grass der r base of the cyence of the base ements: Electric moment anent magnet ectric materia	μΑ me (C) tural cos of nur linder se of the trets ar s	eter movement $200 k\Omega$ onvection from mber?	and h (D) a horiz	aving into $2.5 k\Omega$	ernal

25.	tran	which one of the sferred to a gas i temperature?				-				
	(A)	Isochoric proces	38		(B)	Adiabatic pro	cess			
	(C)	Isothermal pro	cess		(D)	Free expansio	n			
26.	If re	flection coefficies	nt for	voltage be 0.6,	the vol	tage standing v	vave rat	io (VSWR) is	
	(A)	0.66	(B)	4	(C)	1.5	(D)	2		
27.	The	benchmarking p	arame	eter for air con	ditionir	ng equipment is				
	(A)	kW/Ton of refri	gerati	on		•				
	(B)	kW/kg of refrig	erant	handled			· ·			
	(C) kCal/m³ of chilled water									
	(D)	Differential ten	nperat	ure across chi	ller					
28.	For a parallel RLC circuit, if $R=40\Omega$, $L=2~H$ and $C=0.5~F$, the bandwidth and quality factor are respectively									
	(A)	20 rad/s, 0.05	(B)	10 rad/s, 20	(C)	20 rad/s, 10	(D)	0.05 rad	s, 20	
29.	In a heat treatment furnace the material is heated up to 730°C from ambient temperature of 30°C. Considering the specific heat of material as 0.13 Kcal/kg°C, what is the energy content in one kg of material after heating?									
	(A)	910 Kcal	(B)	91 Kcal	(C)	5385 kCal	(D)	700 Kcal		
30.	A penstock pipe of 10 cm diameter carries water under a pressure head of 100 m. If the wall thickness is 9 mm, what is the tensile stress in the pipe wall in MPa?									
	(A)	2725	(B)	545	(C)	272.5	(D)	1090		
31.	The	emissivity of con	venti	onal refractory	·	—— with inci	ease in	temperati	ıre.	
	(A)	Decreases								
	(B)	Increases	-							
	(C)	Remains the sa	me							
	(D)	Sometimes incr	eases	and sometime	s decre	ases			•	
32.	disc	a vapour comp harge from the c cg. What is the C	ompr	essor = 1800k	J/kg, ei	nthalpy at exit		•		
	(A)	3.3	(B)	5.0	(C)	4	(D)	4.5		

	(A)	$\int \phi_2^* \phi_1 d\tau = 0$	(B)	$\int \phi_2 \phi_1 d\tau = 1$	(C)	$ \phi_1 ^2$	$d\tau = 0$	(D)	$\left \phi_2\right ^2 d\tau = 0$			
34.	Pho	to-electric effect	can be	explained on	the bas	sis of						
	(A)	Wave theory of		•	(B)		intum theoi	ry of li	zht			
	(C)	Corpuscular th	eory of	light	(D)	•	ctro-magnet	• .	-			
35.	A pa	article In a box i	n the lo	west energy s	tate (n	= 1)	is most like	ly to b	e at			
	(A)	The walls						•				
	(B)	Middle of the b	xoo									
	(C)	Equal chance f	or any	point at inside	e the b	ож						
	(D)	No where in th	e box									
36.	If a charged particle moves with velocity V in uniform magnetic field (B), the acceleration is maximum when the angle between											
	(A)	$ec{V}$ and $ec{B}$ is ze	ro		(B)	$ec{V}$:	and $ec{B}$ is 45	5°	•			
	(C)	$ec{V}$ and $ec{B}$ is 90)°		(D)	$ec{V}$:	and $ar{B}$ is 18	80°				
37.	The energy gap between successive energy levels in a hydrogen atom											
	(A)	Decreases as e	nergy i	ncreases	(B)	Dec	reases as e	nergy (lecreases			
	(C)	Increases as er	iergy in	creases	(D)	Eitl	ner (A) or (E	3) abov	e			
38.	In a p-n junction diode the depletion region is											
	(A)	Completely neu	utral									
	(B)	Positively char	ged									
•	(C)	Negatively cha	rged					-				
	(D)	A space charge junction	e region	n between pos	itive a	nd n	egative ions	on eit	her side of the			
39.	Max	well's divergenc	e equat	ion for the ma	agnetic	field	is given by	•				
-	(A)	$\nabla \times B = 0$	(B)	$\nabla . B = 0$	(C)	∇×	$B = \rho$	(D)	$\nabla . B = \rho$			
40.	The	electric field line	es and	equipotential	lines			•	•			
	(A)	Are parallel to	each ot	her								
·	(B)	Are one and th	e same				,					
	(C)	Cut each other	orthog	onally								
	(D)	Can be inclined	l to eac	h other at any	angle							
159				6			•					

Two wave functions $\varphi 1$ and $\varphi 2$ are orthogonal if

33.

41.	The total energy of an electron in any stationary orbit is										
	(A)	Always negati	ve		(B)	Always zero					
	(C)	Always positiv	/e	e e e e e e e e e e e e e e e e e e e	(D)	Uncertain					
42.	A pa	arity check usua	ılly can	detect		,					
	(A)	One-bit error			(B)	Double-bit err	or				
	(C)	Three-bit erro	r		(D)	Any-bit error					
43.	Whi	ch of the flowin	g is a E	oson							
	(A)	Electron	(B)	Proton	(C)	Neutron	(D) Photon				
44.	A cu	ırrent amplifier	is char	acterized by							
	(A)										
	(B) High input impedance and low output impedance										
	(C)	C) Low impedance at both input and output terminals									
	(D)	High impedan	ce at be	oth input an	d output	terminals	,				
4 5.	Suppose temperature of the sun goes down by a factor of two, then the total power emitted by the sun will go down by a factor of										
	(A)	2	(B)	4	(C)	8	(D) 16				
4 6.	The	The origin of van der Waal's interaction in molecular crystal is									
	(A)	Nuclear			(B)	Magnetic					
	(C)	Ionic			(D)	Fluctuating di	polar				
47.	Field	d effect transist	or is a					•			
	(A)	Unipolar devic	e		(B)	Bipolar device					
	(C)	Unijunction de	evice	•	(D)	Low input imp	edence device				
48.	Acco	ording to Quant	um Me	chanics, the	waveleng	th is inversely	proportional to the	!			
	(A)	Electric potent	tial		(B)	Speed					
	(C)	Momentum			(D)	Force	·				
49.		amount of energed as	gy requ	ired in exce	ss to the	ground state e	nergy for any actio	n is			
	(A)	Activation ene	rgy		(B)	Pumping ener	gy				
	(C)	Depletion ener	rgy		(D)	Diode energy					

50.	Two electrons stay together in an orbital due to the differences in their											
	(A)	Difference in th	eir el	ectronic charge	(B)	Difference in t	heir sp	in				
	(C)	Difference in th	eir v	olt	(D)	Difference in t		•				
51.	A so	olar cell is a						•				
	(A)	Voltage genera	tor		(B)	Power generat	or					
	(C)	Light generator	•		(D)	Current genera	ator					
52 .	Win	d is nothing but	the m	oment of				•				
	(A)	Water vapour			(B)	Carbon-di-oxid	le					
	(C)	Dust		•	(D)	Air mass						
53.	A di	A difference in the salinity of sea water generates										
	(A)	Sea current	(B)	Waves	(C)	Tide	(D)	Tsunami				
54.	Ford	e of gravity on a	mass	"m" lying on the	eart	h is						
	(A)	F M m/R ²	(B)	G M m/R ²	(C)	E M m/R ²	(D)	W M m/R ²				
55.	The	bonding in crysta	als oc	cur in —	— dif	ferent ways.						
	(A) .	2	(B)	3	(C)	4	(D)	5				
56.	As e	lectron is acceler	ated i	from rest by 10.2	2 meV	7. The percent in	crease	in its mass is				
	(A)	20	(B)	200	(C)	2000	(D)	20000				
57.	In hydrogen spectrum, the series of lines appearing in visible region of spectrum are known as											
	(A)	Pascheur	(B)	Balmer	(C)	Lyman	(D)	Pfund				
58.	Amo	ng the following	comp	ounds, strongest	acid	is						
	(A)	C_2H_2	(B)	C_2H_6	(C)	СН ₃ ОН	(D)	C_6H_6				
59.	The	crystal field stab	ilizat	ion energy (CFS	E) wil	ll be the highest	for					
	(A)	CoF 4-	(B)	Co(CNS) ²⁻ ₄	(C)	$Mn(H_2O)\frac{2}{6}$	(D)	CO(NH3) ₆ ³⁺				
60.	The	reagent common	ly use	d to determine l	ıardn	ess of water titr	imetric	ally is				
	(A)	Oxalic acid		•	(B)	Disodium salt		-				
	(C)	Sodium citrate			(D)	Sodium thio su						
61.	Prop	erties which der	end (on the number	of the	e dissolved part	icle in	a solution are				
	(A)	Isotropic	(B)	Isotonic	(C)	Colligative	(D)	Iso electronic				
150								•				

62.	An example of buffer solution is											
	(A)	HCl + CH ₃ CO	HC		(B)	CH ₃ COOH + CH ₃ COONa						
	(C)	NaOH + NH ₄ O	H		(D)	NaCl+ NaOH						
63.	In J	oule-Thomson ex	pansi	on			-					
	(A)	dS=0	(B)	dH=0	(C)	dE=0	(D)	dG=0				
64.	The	particle having	a majo	or role in bindi	ing the	nucleus is						
	(A)	Neutrons	(B)	Electrons	(C)	Meson	(D)	Proton				
65.	The	Tyndal effect is	due to									
	(A)	Reflection of th	e ligh	t		•						
	(B)	Adsorption of li	ight									
	(C)	Scattering of li	ght									
	(D)	Produce of char	rge on	colloidal part	icles							
66.	Increased concentration of CO ₂ in atmosphere is responsible for											
	(A)	Acid rain			(B)	Lack of photosy	nthesi	is				
	(C)	Greenhouse eff	ect		(D)	Death of aquation	life					
67.	The IUPAC name for (CH ₃)C = CHCH ₂ CH ₂ CH ₂ CH ₂ CH(OH)CH ₃											
	(A)	6 - methyl - 5	- hepte	en-2- ol	(B)	1 - methyl - 2 - 1	hepte	n-5-ol				
	(C)	1 – methyl – 2-	- hepte	en- 6 - ol	(D)	1, 1 —dimethyl —	2– h	epten– 5 – ol				
68.	The angle strain in cyclohexane is nearly											
	(A)	20°	(B)	10°	(C)	15°	(D)	13.28°				
69.	Ben	zene belongs to t	he fol	lowing point g	roup							
	(A)	D ₄ h	(B)	$D_{6}h$	(C)	Ded	(D)	Dsh				
70.	Amo	ong the following	the n	nost basic com	pound i	8	*	•				
	(A)	Benzylamine	(B)	Aniline	(C)	Acetaanilide	(D)	p-nitroaniline				
71.	Whi	ch of the following	ng con	pound has on	e chiral	carbon atom?						
	(A)	D-exythrose			(B)	D-threose	,					
	(C)	Glyceraldehyde	е		(D)	All of the above						
72 .	A bi	ological catalyst	s is									
	(A)	N_2	•		(B)	A carbohydrate						
	(C)	An enzyme		f:	(D)	None of these						

73.		correct equation for the reduction of nicotinamide adenine dinucleotide sphate (NADP+) is								
	(A)	NADP+ +2H+ \rightarrow NADPH++ H+ (B) NADP++H++e- \rightarrow NADPH								
	(C)	NADP++H++2e \rightarrow NADPH (D) NADP++2H++2e \rightarrow NADPH ₂								
74.	The	reactions of the Krebs cycle								
	(A)	Take place in the cytosol of eukaryotic cells								
	(B)	Generate ATP directly by substrate phosphorylation								
	(C) Are important for the metabolism of carbohydrates but not other molecules									
•	(D)	Both (A) and (B)								
75.	The	plant growth regulator that retards senescence is								
	(A)	Cytokinin (B) Gibberellic acid								
	(C)	Indoleacetic acid (D) Ethylene glycol								
76.	Inta	ct duplex DNA is a substrate for								
-	(A)	DNA pol 1 (B) DNA pol 111 (C) RNA polymerase (D) DNA pol 11								
77.	Which of the following has the greatest effect on the ability of blood to transport oxygen?									
	(A) Capacity of the blood to dissolve oxygen									
	(B) Amount of hemoglobin in the blood									
	(C) pH of plasma									
	(D)	CO ₂ content of red blood cells								
78.	What is the fundamental difference between matter and energy?									
	(A)	Matter is cycled through ecosystem; energy is not								
	(B)	Energy is cycled through ecosystems; matter is not								
-	(C)	Energy can be converted into matter; matter cannot be converted into energy								
	(D)	Matter can be converted into energy; energy cannot be converted into matter								
79.	Whi	ch one of the following statements about energy flow is incorrect?								
	(A)	Secondary productivity declines with each trophic level								
	(B)	Only net primary productivity is available to consumers								
	(C)	About 90% of the energy at one trophic level does not appear at the next								
	(D)	Eating meat is probably the most economical way of acquiring the energy of photosynthetic productivity								
159		10								

80.	The biomass of one trophic level getting incorporated into the biomass of the next trophic level is the											
	(A)	Relative ratio	of ene	rgy flow	(B)	Energy flow e	fficienc	v				
·	(C)	Ecological effic	eiency		(D)	Ecological gra						
81.	Epi	genetic relates to)	· •								
	(A)	Base pair misn	natch	due to mutati	on '							
	(B)	Cytosine deleti		÷								
	(C)	Transformation										
	(D)	Methylation of				pression						
82.	Which of the following is not an Antigen Presenting Cell?											
	(A)	Monocytes	_	·	(B)	T cell						
	(C)	Macrophage		•	(D)	Thymus epith	elial ce	lls				
83.	Activity of proteins caspaces in the cell leads to											
	(A)	Proliferation			(B)	Migration						
	(C)	Death		·	(D)	Structural ren	nodelin	g				
84.	Enz	yme that release	s the t	ornsional stre	es huilt	in DNA is		· di				
	(A)	Endonuclease	(B)			DNA polymera	ase (D)	Rec A.				
85.	Gen to ea	es of different sp ach other are call	ecies l led	out possessing	g a clear	sequence and i	function	nal relationship				
	(A)	Analogues	(B)	Paralogs	(C)	Orthologs	(D)	Polymorphs				
86.	Cho	lecalciferol is		•		•						
	(A)	Vitamin B ₁₂	(B)	Vitamin C	(C)	Vitamin Da	(D)	Vitamin K ₁				
87.	Glu	coneogenesis is t	he con	version of			•					
	(A)	Pyruvate to glu	cose		(B)	Glucose to pyr	uvate					
	(C)	Glucose to stard	eh		(D)	Glucose to CO		ater				
88.	Pine	apple is an exam	ple of					•				
	(A)	Aggregate fruit			(B)	Accessory fruit	;					
	(C)	Multiple fruit			(D)	Simple fruit						
89.	The body	ratio of emissive	powe	r of a black bo	dy to th	e emissive pow	er of a	perfectly black				
	(A)	Absorptivity	(B)	Emissivity	(C)	Diffusivity	(D)	Conductivity				

90.	Which one of the following refrigerants has the lowest freezing point temperature?										
	(A)	Freon - 11	(B)	Freon - 12	(C)	Freon – 22	(D)	Ammonia			
91.	Prop	erty of a fluid by	y whic	h its own mole	cules a	re attracted is c	alled				
	(A)	Adhesion			(B)	Cohesion		•			
	(C)	Viscosity			(D)	Compressibilit	y	•			
92.	Amo	ng the following	, whic	h is periodic pr	roperty	₇ ?	ė.				
	(A)	Atomic radii		•	(B)	Inonization pot	tential				
	(C)	Electronaffinity	y		(D)	All					
93.	Zero point energy of a harmonic oscillator is										
	(A)	hv	(B)	Zero	(C)	$\frac{1}{2}$ hv	(D)	$\frac{3}{2}$ hv			
94.		most convenier ecular hydrogen				e to establish ti unds is	he pre	sence of inter			
	(A)	UV	(B)	IR	(C)	EPR	(D)	Mass			
95.	A Ca	arnot engine ope	rates l	between 30 and	1 300°	C. Its maximum	ı efficie	ncy is			
	(A)	Data insufficier			(B)		•				
	(C)	46.24%			(D)						
96.	Poin	t group of CS2 is	۹.								
00.		C _w	(B)	D _{~v}	(C)	C	(D)	C.			
	(A)	O v	(15)	_∨	(0)	V	(D)	Ci			
97.	For an equilibrium process, the following is NOT true										
	(A)	$\Delta G = 0$	(B)	K = 1	(C)	$\Delta S = + ve$	(D)	$\mathbf{k_{re}} = \mathbf{k_{ir}}$			
98.	The lowest energy of an electron confined in a 1-dimensional box of length, a, is										
	(A)	$h^2/(2\pi^2ma^2)$	(B)	$h^2/(4\pi^2ma^2)$	(C)	$h^2/(8\pi^2ma^2)$	(D)	$h^2/(16\pi^2ma^2)$			
99.	An h	eterocylic comp	ound i	. s							
	(A)	Contains both	polar i	and non-polar	roups	•		•			
	(B)	Is a reactive co	mpou	nd due to ring	strain						
	(C)	Is a cyclic comp	ound	soluble in both	water	and organic sol	vents				
	(D)	Has a ring of a									
100.	Pher	nol and formalde	hyde :	are polymerize	d to pr	oduce					
	(A)	Polester	-	Backlite	(C)	PVC	(D)	Nylon			