## ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

## Ph.D. (Mathematics)

COURSE CODE: 118

| Register Number: |   |                  |                                 |
|------------------|---|------------------|---------------------------------|
|                  |   |                  |                                 |
|                  |   | Signature<br>(wi | of the Invigilator<br>(th date) |
|                  | 6 |                  | W 12                            |

COURSE CODE: 118

Time: 2 Hours Max: 400 Marks

### Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

Notation: R - Real line, Q - Set of rationals, Q - Set of natural numbers and C - Set of Complex numbers, Z - Set of integers

For a complex number z, Re z and Im z denote the real and imaginary parts of z respectively.

If G is a group, o(G) denotes the order of G.

For a set E,  $\overline{E}$  – closure of E,  $E^C$  – complement of E and sp(E) – span of E , dim E – dimension of E.

For a normed linear space X,  $X^*$  denotes its dual space, C(Q) – space of scalar valued continuous functions on Q.

Instructions to candidates:

- (i) Answer all questions.
- (ii) Each correct answer carries 4 marks and each wrong answer carries -1 mark.
- (iii) IMPORTANT: Mark the correct statement, unless otherwise specified.
- 1. Let D be a subset of  $\mathbf{R}$  and let f be a continuous mapping from D to  $\mathbf{R}$  given by  $f(x) = x^2 + 1$ . Then f is uniformly continuous if D is
  - (A)  $\mathbf{R}$  (B) Closed and bounded (C)  $(0, \infty)$  (D) Any closed interval
- 2. If  $\{v_1, v_2, ... v_n\}$  is a basis of a vector space V and if T is a linear operator defined on V by  $T(v_i) = v_{i+2}$  if  $1 \le i \le n-2$  and  $T(v_i) = 0$  if  $i \ge n-1$ . Then the rank of  $T^2$  is
  - (A) n
- (B) n − 3
- (C) n-2
- (D) n-4
- 3. The closure of (0,1] in R when R is given discrete topology, is
  - (A) (0,1)
- (B) [0,1]
- (C) (0,1]
- (D) R
- 4. Let (X, d) be a metric space. Fix x in X. Then the map  $: y \to d(x, y)$  is
  - (A) not bounded
  - (B) bounded but not continuous
  - (C) continuous but not uniformly continuous
  - (D) uniformly continuous

| 5.  | Let f be a function defined on R by f<br>the sign function. Then f is continuous | $f(x) = x^{\operatorname{sgn} x}$ if $x \neq 0$ and $f(0) = 0$ where $\operatorname{sgn} x$ | is |
|-----|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----|
|     | (A) nowhere                                                                      | (B) everywhere                                                                              |    |
|     | (C) only at 0                                                                    | (D) everywhere except at 0                                                                  |    |
| 6.  | If $P_n(x)$ is the Legendre polynomial of                                        | degree $n$ then $P_2(x)$ is equal to                                                        |    |
|     | (A) $\frac{1}{2}(3x^2 - 1)$ (B) $\frac{1}{2}(3x^2 + 1)$                          | (C) $\frac{1}{3}(2x^3-1)$ (D) $\frac{1}{3}(2x^3+1)$                                         |    |
| 7.  | Let $f(x) =  x ^3$ . Then f is                                                   |                                                                                             |    |
|     | (A) continuous but not differentiable                                            | anywhere                                                                                    |    |
|     | (B) differentiable only at $x > 0$                                               |                                                                                             |    |
|     | (C) uniformly continuous on the real                                             | line                                                                                        |    |
|     | (D) differentiable at all nonzero $x$                                            |                                                                                             |    |
| 8.  | The exponential map from $(R,+)$ to $(R$                                         | /{0},.) is                                                                                  |    |
|     | (A) continuous but not a group homo                                              | morphism                                                                                    |    |
|     | (B) not continuous but a group homo                                              | morphism                                                                                    |    |
|     | (C) a continuous group homomorphis                                               | sm                                                                                          |    |
|     | (D) an onto group homomorphism                                                   |                                                                                             |    |
|     |                                                                                  |                                                                                             |    |
| 9.  | If D is the open unit disc of C and /                                            | from $D$ into $C$ is a non-zero map such the                                                | at |
|     | $f\left(\frac{1}{2^n}\right) = 0$ for every $n$ , then $f$ is                    |                                                                                             |    |
|     | (A) not continuous on D                                                          | (B) unbounded on D                                                                          |    |
|     | (C) bounded on D                                                                 | (D) not analytic on D                                                                       |    |
| 10. | If $A$ is an $n \times n$ idempotent matrix, the                                 | n $A$ is                                                                                    |    |
|     | (A) the identity matrix                                                          | (B) the zero matrix                                                                         |    |
|     | (C) singular                                                                     | (D) non singular and triangular                                                             |    |

11. Let  $\sum a_n$  be a convergent series of nonnegative terms. Then

(A)  $\lim_{n} \inf na_n = 0$ 

(B)  $\lim_{n} \sup na_n = 1$ 

(C)  $0 < \liminf_{n} na_n < 1$ 

(D)  $\lim_{n} \sup_{n} a_{n} > 0$ 

| 12. | If $n \ge 0$ then the integral $\int_{0}^{\infty} e^{-x} x^{n} dx$     |                 |                                                                   |
|-----|------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------|
|     | (A) is equal to n!                                                     | (B)             | is equal to $(n-1)$ !                                             |
|     | (C) does not converge                                                  | (D)             | is 0                                                              |
|     |                                                                        |                 |                                                                   |
| 13. | Suppose that $f: \mathbf{R} \to \mathbf{R}$ is continuous an           | $d \mid f(x) -$ | $f(y) \ge \frac{3}{4} x-y $ for all $x, y$ in $\mathbb{R}$ . Then |
|     | $f(\mathbf{R})$ is                                                     |                 |                                                                   |
|     | (A) R                                                                  | (B)             | 0                                                                 |
|     | (C) an interval not necessarily R                                      | (D)             | [0, ∞)                                                            |
|     |                                                                        |                 |                                                                   |
| 14. | The map $f(z) = \frac{\sin \pi \sqrt{z}}{\pi \sqrt{z}}$                |                 |                                                                   |
|     | (A) an entire function of order 1                                      | (B)             | an entire function of order $\frac{1}{2}$                         |
|     | (C) is not an entire function                                          | (D)             | an entire function of order 2                                     |
| 15. | The matrix corresponding to the differen                               | ntial ope       | erator $D$ on $P_n([0,1])$ is                                     |
|     | (A) idempotent (B) singular                                            | (C)             | not singular (D) diagonal                                         |
| 16. | If $f: l_{\infty} \to \mathbf{R}$ is given by $f(\{x_n\}) = x_2$ , the | n the no        | $\operatorname{rm}$ of $f$ is                                     |
|     | (A) 1 (B) 0                                                            | (C)             | 2 (D) $\frac{1}{2}$                                               |
| 17. | Let $T_1, T_2$ be two topologies on a non-em                           | pty set .       | X. Then                                                           |
|     |                                                                        |                 |                                                                   |

(A)  $T_1 \cap T_2$  is empty

(B)  $T_1 \cap T_2$  is a topology on X

(C)  $T_1 \cup T_2$  is a topology on X

(D) If  $T_1$  contains  $T_2$ , then  $T_1 \, / \, T_2$  is a topology on X

| 18. | Let H be a Hilbert space and Y is a closed subspace of H. If $f \in Y^*$ has norm 1 then                                                                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $A = \{\bar{f} \in H^* : \bar{f} \text{ is a Hahn-Banach extension of } f \} \text{ then }$                                                                       |
|     | (A) $A$ is a singleton set and if $\{\bar{f}\}=A$ then there exists a unique $y_0\in Y$ such that $\bar{f}(x)=\left\langle x,y_0\right\rangle \   \forall x\in H$ |
|     | (B) $A$ is a singleton set and if $\{\bar{f}\}=A$ then there exists $y_0\in H/Y$ such that $\bar{f}(x)=\langle x,y_0\rangle  \forall x\in H$                      |
|     | (C) A may contain more than one element.                                                                                                                          |

(D) A can be empty set

If  $f: \mathbb{R} \to \mathbb{R}$  is a measurable function and  $g: \mathbb{R} \to \mathbb{R}$  is a continuous function, then

- the composition g o f is a measurable function (A)
- (B) the composition f o g is a measurable function
- f + g is a measurable functions (C)
- fg is measurable function.
- Let X and Y be Banach spaces and  $f_n: X \to Y$  be a continuous map for each n and 20. let  $(f_n)$  converge pointwise to f in X. Then f is continuous on X if
  - $f_n$  is uniformly continuous on X for each n
  - $f_n$  is linear for each n
  - X is locally compact
  - (D) X is separable.
- If  $\bar{u}$  is the velocity of fluid flow and J is the Jacobian of the fluid flow map, then  $\frac{\partial J}{\partial t}$ 21. is
  - (A) J
- (B)  $J(\nabla.\overline{u})$  (C) zero
- (D) ∇.ū
- The complex potential for a potential vortex at  $z_0$  with circulation  $\Gamma$  is 22.
  - (A)  $\frac{\Gamma}{2\pi i z}$
- (B)  $\frac{\Gamma \log z}{2\pi i}$  (C)  $\frac{\Gamma z}{2\pi i}$
- (D)  $\frac{\Gamma \log^{(z-z_0)}}{2\pi i}$

- The set  $\{\sqrt{2} + x : x \text{ is rational}\}\$  is 23.
  - (A) closed in R

- (B) open in R
- both open and closed in R
- (D) neither open nor closed in R

24. Mark the wrong statement

Let X be a finite dimensional normed linear space. Then

- there exists a finite subset  $\{g_1,g_2,...g_n\}$  of  $X^*$  such that  $\bigcap$   $\ker$  nal of  $g_i=\{0\}$
- Every subspace of X is closed in X (B)
- Every closed ball in X is compact (C)
- X is isometrically isomorphic to  $\mathbb{R}^k$  where  $k = \dim X$
- Let  $T: \mathbb{R}^n \to \mathbb{R}^n$  be a linear map. Then T is 25.
  - continuous but not uniformly continuous
  - continuous if and only if range of T is a bounded set (B)
  - continuous if and only if range of T is compact
  - (D) uniformly continuous
- The inverse Laplace transform of  $\frac{1}{s(s+1)(s+2)}$  is 26.
  - (A)  $\frac{1}{2} + e^t + \frac{1}{2}e^{2t}$

(B)  $\frac{1}{2} + e^{-t} + \frac{1}{2}e^{-2t}$ 

(C)  $\frac{1}{2} - e^{-t} - \frac{1}{2}e^{-2t}$ 

- (D)  $\frac{1}{2} e^t + \frac{1}{2}e^{2t}$
- The singular solution of  $y = xy' + y'^2$  is

- (A)  $y = \frac{1}{4x^2}$  (B)  $y = -\frac{1}{4x^2}$  (C)  $y = \frac{1}{4}x^2$  (D)  $y = -\frac{1}{4}x^2$
- Let X be a metric space with metric d. Let x, y belong to X. Then  $(X, d_1)$  is a metric space if  $d_1(x, y)$  is defined as
  - (A) 1-d(x,y)

- (B) 1 + d(x, y) (C)  $\frac{1 d(x, y)}{1 + d(x, y)}$  (D)  $\frac{d(x, y)}{1 + d(x, y)}$

| 29. | Let  | $0 < q < 1$ . The sequence $n \left[ q + \frac{q}{n} \right]$ |                                   |                          |     |
|-----|------|---------------------------------------------------------------|-----------------------------------|--------------------------|-----|
|     | (A)  | converges to 0                                                | (B) converges to                  | 1                        |     |
|     | (C)  | converges to e                                                | (D) diverges to $\alpha$          |                          |     |
| 30. |      | number of roots of the equation                               | on $z^{10} - z^4 - 5 = 0$ which l | ie in the interior of    | the |
|     | (A)  | 0 (B) 1                                                       | (C) 5                             | (D) 10                   |     |
| 31. | If 2 | $n-1$ is a prime number then $2^n$                            | $-1(2^n-1)$ is a                  |                          |     |
|     | (A)  | odd number                                                    | (B) even number                   |                          |     |
|     | (C)  | perfect number                                                | (D) prime number                  | er                       |     |
| 0.0 | 7.0  | 7 ( ) · · · · · · · · · · · · · · · · · ·                     |                                   | c 7 ()                   |     |
| 39  |      | $I_{p}(x)$ is the Bessel function of                          | order p then the positiv          | e zeros of $J_{-1/2}(x)$ | are |
|     | sepa | ar, ted by the distante and                                   |                                   |                          |     |
|     | (A)  | $\pi$ (B) $\frac{\pi}{2}$                                     | (C) 2π                            | (D) $\frac{2}{\pi}$      |     |
| 33. | Let  | H be a subgroup of $G$ . Then                                 |                                   |                          |     |
|     | (A)  | The center of G is contained in                               | n H                               |                          |     |
|     | (B)  | The center of $G$ is contained in                             | n the normalizer of $H$           |                          |     |
|     | (C)  | The normalizer of $H$ is contain                              | ned in the center of $U$          |                          |     |
|     | (D)  | The normalizer of $H$ is contain                              | $\operatorname{ned}$ in $H$       |                          |     |
| 34. | (A)  | Any subgroup of a infinite cyc                                | ia group is infinite              |                          |     |
| 04. | (B)  | An infinite cyclic group has in                               | and the second second             | 10                       |     |
|     | (C)  | An infinite cyclic group has ex                               |                                   | 5                        |     |
|     | (D)  | An infinite cyclic group has in                               |                                   |                          |     |
|     | (D)  | Till illimite eyelle group has ill                            | initiony many bangroups           |                          |     |
| 35. | (A)  | Any two finite abelian groups                                 | of same order are isomorp         | hic                      |     |
|     | (B)  | Any two infinite cyclic groups                                | are isomorphic                    |                          |     |
|     | (C)  | Any two infinite abelian group                                | os are isomorphic                 |                          |     |
|     | (D)  | Any two group of order four a                                 | re isomorphic                     |                          |     |

| 36. |        | H be a subgroup of a group $G$ . Then the set of all left cosets of $H$ form a group or the induced binary operator of $G$ |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------|
|     | (A)    | if $H$ is an abelian subgroup of $G$                                                                                       |
|     | (B)    | if $H$ is a cyclic subgroup of $G$                                                                                         |
|     | (C)    | if $H$ is a normal subgroup of $G$                                                                                         |
|     | (D)    | if $H$ is a finite subgroup of $G$                                                                                         |
| 37. | Eve    | ry finite group is isomorphic to                                                                                           |
|     | (A)    | a subgroup of the additive group of integers                                                                               |
|     | (B)    | an additive group of integers modulo $n$                                                                                   |
|     | (C)    | a subgroup of a finite cyclic group                                                                                        |
|     | (D)    | a subgroup of permutation group of finite order                                                                            |
| 38. | $ax^8$ | $+2bx^2 + 2c$ is irreducible if                                                                                            |
|     | (A)    | 2 does not divide both $a$ and $b$ (B) 2 divides $a$ but does not divides $c$                                              |
|     | (C)    | 2 divides both $b$ and $c$ (D) 2 divides neither $a$ nor $c$                                                               |
| 39. | Mar    | k the <u>wrong</u> Statement                                                                                               |
|     | (A)    | If $d$ divides order of a group $G$ , then $U$ has a subgroup of order $d$                                                 |
|     | (B)    | If $a$ prime $p$ divides order of a group $G$ , then $G$ has a subgroup of order $p$                                       |
|     | (C)    | If $p^r$ where $p$ prime and $r$ positive integer, divides order of a group $G$ , then $G$                                 |
|     |        | has a subgroup of order $p^r$                                                                                              |
|     | (D)    | If $d$ divides order of a group $G$ and $G$ is cyclic, then $G$ has a subgroup order $d$                                   |
| 40. | The    | cancellation law with respect to multiplication is true                                                                    |
|     | (A)    | only in fields (B) only in finite fields                                                                                   |
|     | (C)    | in commutative rings (D) in integral domains                                                                               |
| 41. | Асо    | mmutative ring with no nonzero proper ideal is                                                                             |
|     | (A)    | a zero ring                                                                                                                |
|     | (B)    | a ring containing $p$ elements where $p$ is a prime number                                                                 |
|     | (C)    | a finite ring                                                                                                              |

(D) a field

| 42. | Let $K$ be the splitting field of the minimal polynomial of the cubic root of 5 over the field ${\bf Q}$ . Then the degree of $K$ over ${\bf Q}$ is |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (A) 1 (B) 3 (C) 6 (D) 5!                                                                                                                            |
| 43. | In <b>Z</b> , the ring of integers,                                                                                                                 |
|     | (A) all the prime ideals are maximal ideals                                                                                                         |
|     | (B) all the maximal ideals are of the form $pZ$ , where $p$ is a prime number                                                                       |
|     | (C) every ideal is maximal ideal                                                                                                                    |
|     | (D) there exist no maximal ideal                                                                                                                    |
| 44. | Let $R[x]$ denote the polynomial ring with indeterminate $x$ . Then                                                                                 |
|     | (A) If $R$ is a field then $R[x]$ is a field                                                                                                        |
|     | (B) If $R$ is a finite ring then $R[x]$ is a finite ring                                                                                            |
|     | (C) If $R$ is a integral domain then $R[x]$ is an integral domain                                                                                   |
|     | (D) If $R$ is an Euclidean domain then $R[x]$ is an Euclidean domain                                                                                |
| 45. | Mark the wrong statement.                                                                                                                           |
|     | If $F$ is a subfield of $K$ and $K$ is a subfield of a field $L$ .                                                                                  |
|     | (A) If an element $x$ in $L$ is algebraic over $K$ then $x$ is also algebraic over $F$                                                              |
|     | (B) If $K$ is finite extension of $F$ and $L$ is a finite extension of $K$ then $L$ is a finite extension of $F$                                    |
|     | (C) If $K$ is algebraic extension of $F$ and $L$ is algebraic extension of $K$ then $L$ is algebraic extension of $F$                               |
|     | (D) If $F$ , $K$ and $L$ are finite fields then the number of elements in $L$ is a power of number of elements in $F$                               |
| 46. | Let $X$ be a normed linear space, $X_1 = \{x \in X :   x   = 1\}$ and $Y$ be a proper closed                                                        |
|     | subspace of X. For x in X, let $d(x,Y) = \inf\{  x-y   : y \in Y\}$ . Then                                                                          |
|     | (A) $\sup\{d(x,Y): x \in X_1\} = 1$ (B) $\sup\{d(x,Y): x \in X_1\} > 1$                                                                             |
|     | (C) $d(x,Y) > 1$ for any $x \in X_1/Y$ (D) $d(x,Y) < 1$ , for any $x \in X_1$                                                                       |
|     |                                                                                                                                                     |

| 47. |     | ring of Gaussian integers $\{a+ib:a,b \text{ belongs to } \mathbf{Z}\}$ under a tiplication is not a field because | complex addition and |
|-----|-----|--------------------------------------------------------------------------------------------------------------------|----------------------|
|     | (A) | multiplication is not commutative                                                                                  |                      |
|     | (B) | multiplicative inverses do not exist                                                                               |                      |
|     | (C) | multiplicative identity does not exist                                                                             |                      |
|     | (D) | multiplication is not distributive with respect to addition                                                        |                      |
|     |     |                                                                                                                    |                      |

| 48. | Let $a, b, p$ , | q be positive constants. | The series | $\sum_{1}^{\infty} \overline{(a)}$ | $\frac{1}{(b+n)^p \cdot (b+n)^q}$ | is convergent |
|-----|-----------------|--------------------------|------------|------------------------------------|-----------------------------------|---------------|
|     |                 |                          |            |                                    |                                   |               |

(A) for  $p+q \le 1$ 

(B) for  $p \le 1$ 

(C) for  $q \ge 1$ 

(D) for all p and q

- 49. 21000 is equal to
  - (A) 3 (mod 17)
- (B) 7 (mod 17)
- (C) 1 (mod 17)
- (D) 0 (mod 17)
- 50. Let X and Y be Banach Spaces and  $T: X \to Y$  is a linear map. Then T is continuous on X if the composition go T is continuous for each  $g \in Y^*$ , is an immediate corollary to
  - (A) Hahn Banach Theorem
  - (B) Principle of Uniform Boundedness
  - (C) Closed graph Theorem
  - (D) Riesz Fisher Theorem
- 51. Let A be an  $n \times n$  matrix which is both Hermitian and unitary. Then
  - (A)  $A^2 = 1$
  - (B) A is real
  - (C) The eigenvalues of A are 0, 1, -1
  - (D) The characteristic and minimal polynomials of A are the same.
- 52. Mark the wrong statement

X is a normed linear space and if C is a convex subset of a normed linear space X then

- (A) Closure of C is convex
- (B) If  $x \in \overline{C}$  and  $y \in$  interior of C then  $\lambda x + (1 \lambda)y$  is in interior of C for  $0 \le \lambda < 1$
- (C) If C is compact then convexhull of  $C \cup \{x\}$  is compact for each  $x \in X$
- (D) Every  $x \in X$  has a nearest element from the closure of C

53. 
$$\int_{0}^{2\pi} \frac{d\theta}{5 - 4\cos\theta} \text{ is}$$

- (A) π
- (B)  $\frac{2\pi}{3}$
- (C)  $-\frac{\pi}{3}$
- (D) 0

- 54. Let R be a ring of characteristic p. Then
  - (A) R has p elements

- (B)  $a^p = 0$  for every  $a \in R$
- (C)  $(ab)^p = a^p b^p$  for all  $a, b \in R$
- (D)  $(a+b)^p = a^p + b^p R$  for all  $a, b \in R$
- 55. The number of conjugate classes in the symmetric group  $S_5$  is
  - (A) 5
- (B) 7
- (C) 10
- (D) 25
- 56. Let G be a group of order 28. Let H, K be subgroups of G of order 4 and 7 respectively. Then
  - (A) HK is not a subgroup of G
- (B) HK is a proper subgroup of G

(C) G = HK

- (D) None of these
- 57. (A) Every quotient group of a non-abelian group is non-abelian
  - (B) If  $\frac{G}{N}$  is a cyclic group, then G is cyclic
  - (C) If  $\frac{G}{Z(G)}$  is cyclic, then G is abelian
  - (D) In the set of subgroups the relation "is a normal subgroup" is transitive
- 58. (A) The gamma function is an analytic function with negative integers as the only zeros
  - (B) The gamma function is an analytic function without any zeros
  - (C) The gamma function is a meromorphic function with negative integers and 0 as the poles
  - (D) The gamma function is a meromorphic function with non-negative integers as the only poles

|     | (A)   | $\frac{2}{\pi}$                         | (B)        | $\frac{4}{\pi}$       | (C)                                 | $-\frac{2}{\pi}$                 | (D) 1                                          |      |
|-----|-------|-----------------------------------------|------------|-----------------------|-------------------------------------|----------------------------------|------------------------------------------------|------|
| 61. | 77.1  |                                         |            |                       |                                     |                                  | then the momentum formal $\hat{n}$ is given by | flux |
|     | (A)   | $p\hat{n}$                              | (B)        | $p\hat{n} + p\vec{u}$ | $(\vec{u}, \hat{n})$ (C)            | $\rho \vec{u}(\vec{u}, \hat{n})$ | (D) $\rho \overline{u}$                        |      |
| 62. | In pl | lane Poiseuille f                       | low, th    | e velocity p          | rofile is a                         |                                  |                                                |      |
|     | (A)   | straight line                           | (B)        | parabola              | (C)                                 | ellipse                          | (D) hyperbola                                  |      |
| 63. | The   | value of $\int_{-1}^{1}  z  dz$         | along      | the upper             | hemisphe                            | ere $\{z \in \mathbb{C} :  z \}$ | $=1$ and Im $z \ge 0$ of                       | the  |
|     | unit  | disc is                                 |            |                       |                                     |                                  |                                                |      |
|     | (A)   | 0                                       | (B)        | 2                     | (C)                                 | 1                                | (D) ∞                                          |      |
| 64. | Let   | P be the class of                       | all pol    | ynomials o            | n [0,1]. Th                         | en                               |                                                |      |
|     | (A)   | P with supnor                           | n is co    | mplete                |                                     |                                  |                                                |      |
|     | (B)   | $P$ with $L_1$ -norm                    | n is co    | mplete                |                                     |                                  |                                                |      |
|     | (C)   | $P$ with $L_2$ -norm                    | m is co    | mplete                |                                     |                                  |                                                |      |
|     | (D)   | There is no no                          | em   .   e | on $P$ such th        | nat (P,   .  )                      | is complete                      |                                                |      |
| 65. | Let   | $f:[a,b] \to \mathbb{R}$ be             | a map.     | Then if $f(x)$        | $\left(x\right) = \frac{\sin x}{x}$ |                                  |                                                |      |
|     | and   | $g(x) = \frac{1}{x^{\frac{3}{2}}}$ , fo | r x in     | $[1,\infty)$ then     |                                     |                                  |                                                |      |
|     | (A)   | Both f and g ar                         | re not l   | Lebesgue in           | tegrable                            |                                  |                                                |      |
|     | (B)   | Both f and g as                         | re Lebe    | esgue integr          | able                                |                                  |                                                |      |
|     | (C)   | f is Lebesgue i                         |            |                       |                                     |                                  |                                                |      |
|     | (D)   | g is Lebesgue i                         | ntegra     | ble but f is          | not                                 |                                  |                                                |      |
| 118 |       | 7.                                      |            |                       | 12                                  |                                  |                                                |      |

If f and g are differentiable functions from R into R such that  $f(0) = \frac{1}{g(0)}$  and

Mark the wrong statement?

 $K_5$  is non-planar

 $h(x) = f(x)g(x)\sin\frac{\pi}{2}x$  then h'(0) is

 $K_{\rm 5}$  – e is planar for any edge e of  $K_{\rm 5}$ 

The Petersen graph is non-planar

 $K_{3,3}$  is planar

59.

(A)

(B) (C)

(D)

| (A) | f is bounded on D                                              |  |
|-----|----------------------------------------------------------------|--|
| (B) | f is continuous on D                                           |  |
| (C) | the set $\{x \in D :  f(x)  = \infty\}$ has Lebesgue measure 0 |  |
| (D) | f is Riemann integrable on D if D is a compact interval        |  |



- 68. If  $([a_n, b_n])_{n=1}^{\infty}$  is a sequence of pairwise disjoint interval such that  $0 < b_n a_n < \frac{1}{n^3} \quad \forall n \ge 1 \text{ then } f = \sum_{n=1}^{\infty} n \chi_{[a_n, b_n]}, \text{ where } \chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ 
  - (A) is Lebesgue integrable on R.
  - (B) is not Lebesgue measurable on R
  - (C) is Lebesgue integrable only on compact intervals of R
  - (D) is Lebesgue measurable but not Lebesgue integrable on R
- 69. The transformation  $w = \frac{z (1 + i2)}{z (1 i2)}$  maps the upper half plane Im z > 0 onto

  (A)  $\{w : |w| < 1\}$  (B)  $\{w : |w| \le 1\}$  (C)  $\{w : |w| < 1\}^c$  (D)  $\{w : |w| \le 1\}^c$

70. If 
$$f(z) = \frac{(z^2 - 4)(z - 1)^4}{(\sin z)^4}$$
 then for  $f$ ,

- (A)  $z = \infty$  is an isolated singularity
- (B) z = 2 is a pole of order 4
- (C) z = -2 is a pole of order 4
- (D) z = 0 is a pole of order 4
- 71. Let X and Y be Banach spaces and  $T: X \to Y$  be a linear map. If  $B_x$  and  $B_y$  are the open unit balls of X and Y respectively then T is an open map if and only if
  - (A)  $T(B_X) \supseteq B_Y$
  - (B) there exists  $\delta > 0$  such that  $T(\delta B_X) \subseteq B_Y$
  - (C) there exists M>0 such that for each  $y\in Y$  there is an element  $x\in X$  with Tx=y and  $\|x\|\leq M\|y\|$
  - (D) there exists M>0 such that for each  $y\in Y$ ,  $\|x\|\leq M\|y\|$  for every  $x\in X$  that satisfies Tx=y

| 72.  | Let.   | X be a normed linear space, $Y$ and          | Z be close      | ed subspaces of X. Then                                 |
|------|--------|----------------------------------------------|-----------------|---------------------------------------------------------|
|      | (A)    | Y + Z is a closed subspace of $X$            |                 |                                                         |
|      | (B)    | Y + Z is a closed subspace of $X$ if         | Y and $Z$ a     | are complete                                            |
|      | (C)    | Y + Z is a closed subspace if the $G$        | closed uni      | t ball of Y is compact                                  |
|      | (D)    | Y+Z is a closed subspace if $X$ is           | complete        |                                                         |
|      |        |                                              |                 |                                                         |
| 73.  |        | k the <u>wrong</u> Statement                 |                 |                                                         |
|      |        | is an infinite dimensional Banach            |                 |                                                         |
|      | (A)    |                                              |                 |                                                         |
|      | (B)    | X has a closed bounded and conv              |                 |                                                         |
|      | (C)    | X has a discontinuous linear fund            |                 |                                                         |
|      | (D)    | X has a conyex subset that is not            | connecte        | d                                                       |
| 74.  | If (   | ) is a compact Hausdorff space               | $a \in \Omega$  | and $\delta_{q0}(f) = f(q_0)  \forall  f \in C(Q)$ with |
| 1.1. |        |                                              | , 40 = 4        | and $o_{q0}(f) = f(q_0)$ v $f \in C(Q)$ with            |
|      |        | norm, then $\delta_{q0}$                     |                 |                                                         |
|      | (A)    | a bounded linear functional with             |                 | ictly greater than 1                                    |
|      | (B)    | a bounded linear functional with             |                 |                                                         |
|      | (C)    | is a linear functional that is not o         |                 | S                                                       |
|      | (D)    | The kernel of $\delta_{q0}$ is not closed in | C(Q)            |                                                         |
|      |        |                                              |                 |                                                         |
| 75.  | If $X$ | is an inner product space, x, y are          | in X with       | $ \langle x, y \rangle  =   x     y   $ then            |
|      | (A)    | x = y but x need not be 0                    | (B)             | x and $y$ are orthogonal                                |
|      | (C)    | x = y = 0                                    | (D)             | $y$ is in the span of $\{x\}$                           |
|      |        |                                              |                 |                                                         |
| 76.  | If $H$ | is a Hilbert space and $f \in X^*$ then      | $1 \{x \in H :$ | x   = 1 and $f(x) =   f  $                              |
|      | (A)    | can be empty                                 |                 |                                                         |
|      | (B)    | is a singleton set                           |                 |                                                         |
|      | (C)    | is a finite set with more than one           | element         |                                                         |
|      | (D)    | is a countably infinite set                  |                 |                                                         |
|      |        |                                              |                 |                                                         |
| 77.  | In a   | discrete topological space the only          |                 |                                                         |
|      | (A)    | finite subsets                               | (B)             | singleton sets                                          |
|      | (C)    | infinite sets                                | (D)             | the whole set                                           |
| 118  |        |                                              | 14              |                                                         |
|      |        |                                              |                 |                                                         |

# Mark the wrong statement

- Arbitrary product of compact space is compact
- Arbitrary product of connected space is connected
- Arbitrary product of sequentially compact space is sequentially compact (C)
- Arbitrary product of completely regular space is completely regular (D)

### Consider R with the co-countable topology \( \tau \) (open sets are complements of countable 79. sets and the empty set). Then the class of all compact subset of $(R, \tau)$ is

- - class of all countable subsets of R (B) class of all finite subsets of R
- class of all subsets of R
- (D) class of all singleton subset of R

#### 80. Mark the wrong statement

- (A)  $\overline{A}$  is totally bounded if A is totally bounded
- If  $e_n = (0,0,...,1^{nth},0,0,...)$ , for all positive integers n, then  $(e_n)_{n=1}^{\infty}$  is a totally bounded subset of the sequence space 1,
- A subset of  $\mathbb{R}^n$  is totally bounded if and only if it is bounded
- (D) A compact subset of a metric space is totally bounded

81. If 
$$f(z) = \frac{\operatorname{Im}(z)}{|z|}$$
 for  $z \neq 0$  and  $f(0) = 0$  where z belongs to the complex plane, then f is

- (A) continuous everywhere
- (B) discontinuous only at zero
- (C) continuous only at zero
- (D) continuous nowhere

#### 82. The set of $2 \times 2$ matrices with determinant 1

- (A) is a group under addition
- is a non-commutative group under multiplication
- (C) is a commutative group under multiplication
- (D) is a group neither under addition nor under multiplication

# 83. Mark the wrong statement

- totally bounded subset of a metric space is separable
- A subspace of a separable topological space is separable
- A topological space with countable base is separable
- (D) The product of countable family of separable spaces is separable

15

- A harmonic conjugate of  $u(x, y) = x^2 y^2 + xy$  is
  - (A)  $x^2 y^2 xy$

- $(B) \quad x^2 + y^2 xy$
- (C)  $2xy + \frac{1}{2}(y^2 x^2)$
- (D)  $\frac{1}{2\pi i} + 2(y^2 x^2)$
- 85. Mark the wrong statement

Consider R with the topology  $\tau$  generated by half open intervals of the form [a, b),  $a, b \text{ in } \mathbf{R} \ a < b$ . Then

(A) (R, τ) is separable

(B)  $(\mathbf{R}, \tau)$  is regular

 $(\mathbf{R}, \tau)$  is disconnected (C)

- (D)  $(\mathbf{R}, \tau)$  is metrizable
- A complete metric space with no isolated points is 86.
  - (A) not connected

(B) not compact

not countable (C)

- (D) not locally compact
- In the ring of integers if I = (39) and J = (93) are two principal ideals, then the ideals I+J and  $I\cap J$  are respectively given by
  - (A) (3627), (3)
- (B) (3), (3627)
- (C) (1209), (3)
- (D) (3), (1209)

The linear fractional transformation that maps

 $z_1 = 0$ ,  $z_2 = 1$ ,  $z_3 = \infty$  onto  $w_1 = -1$ ,  $w_2 = -i$  and  $w_3 = 1$  respectively is

- (B)  $\frac{z-i}{z+i}$  (C)  $\frac{z-1}{z+1}$  (D)  $e^z$
- A topological space X is such that disjoint compact subsets of X can be separated by 89. disjoint open subsets of X. Then
  - (A) X is metrizable
  - X is normal but need not be metrizable
  - (C) X is regular but need not be normal
  - (D) X is Hausdroff but need not be regular
- Using  $u = \frac{W}{u}$  in the partial differential equation  $xu_x = u+yu_y$ , the transformed equation has the solution W=
  - (A)  $f\left(\frac{x}{y}\right)$
- (B) f(x+y)
- (C) f(x-y)
- (D) f(xy)

91. The general solution of 
$$\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$$
 is

(A) 
$$\varphi(x+y+z, x^2-y^2)$$

(B) 
$$\varphi\left(\frac{y-x}{z-x}, (y-x)(x+y+z)^{\frac{1}{2}}\right)$$

(C) 
$$\varphi\left(\frac{x-y}{y-z}, \frac{y-z}{z-x}\right)$$

(D) 
$$\varphi\left(\frac{x+y}{z}, z-x-y\right)$$

92. The Laplace transform of 
$$e^{-t}$$
 cos 2t is

(A) 
$$\frac{s+1}{s^2+2s+5}$$

(B) 
$$\frac{s-1}{(s+1)^2}$$

(C) 
$$\frac{s^2 - 2s + 3}{s^2 + 2s + 5}$$

(D) 
$$\frac{s^2-1}{s^2+4s+5}$$

(A) 
$$xp - yq = 0$$

(B) 
$$xp - yq = x - y$$

(C) 
$$xp + yq = 0$$

(D) 
$$xp + yq = x + y$$

94. The set 
$$\{1, x + 1, x^2 + 1, x^3 + 1, x^4 + 1, x^5 + 1\}$$
 in  $P_{5}$  ([0,1]), the class of all polynomials of degree  $\leq 5$  defined on [0,1]

- (A) is a basis
- (B) is linearly independent but does not span P<sub>s</sub> ([0,1])
- (C) is not linearly independent but spans  $P_5$  ([0,1])
- (D) neither spans  $P_{\Xi}$  ([0,1]) nor is linearly independent

# 95. Mark the wrong statement.

The infinite product  $\prod_{k=1}^{\infty} 1 + w_k$ , where  $(w_k)$  is a sequence in C,

- (A) Converges if and only if the sequence  $(w_k)$  converges to zero
- (B) Converges if and only if  $\sum_{k=1}^{\infty} Log(1+w_k)$  converges

(C) Converges absolutely if and only if 
$$\prod_{k=1}^{\infty} 1 + |w_k|$$
 converges

17

(D) Converges if and only if 
$$\sum_{k=1}^{\infty} w_k$$
 converges

- 96. If  $f(z) = \sum_{n=1}^{\infty} \frac{1}{p^n n^z}$   $z \in \mathbb{C}$ , then
  - (A) f is not well defined on C
  - f is not differentiable at zero
  - f is a meromorphic function on C
  - f is an entire function on C
- If  $a_n$  is a sequence of non-negative reals then  $\liminf(1-a_n)$  equals 97.
  - (A)  $1-\liminf_{n}(a_n)$

(B)  $1 - \limsup_{n} a_n$ 

(C)  $1-\liminf_{n}(-a_n)$ 

- (D)  $1 + \liminf_{n} a_n$
- Let Aut(G) denote the group of automorphisms of a group G. Which one of the 98. following is NOT a cyclic group?
  - $Aut(\mathbf{Z}_4)$

- (B)  $Aut(\mathbf{Z}_6)$  (C)  $Aut(\mathbf{Z}_8)$  (D)  $Aut(\mathbf{Z}_{10})$
- If  $f(z) = \tan z, z \in \mathbb{C}$ , then 99.
  - (A)  $z = \frac{\pi}{2}$  is an essential singularity of f
  - (B)  $z = \frac{\pi}{2} + m\pi$  is a simple pole of f for any integer m
  - (C)  $z = \frac{\pi}{2} + \frac{\pi}{2}$  is a double pole of f for m = 1 or -1
  - (D)  $z = \frac{\pi}{2}$  is a double pole of f
- 100. Let F be a field. Then
  - F has an infinite number of ideals
- (B) F has exactly two ideals
- F has exactly one ideal
- (D) F has no ideal