ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (MECHANICAL ENGINEERING)

COURSE CODE: 139

Register Number	r :				
				Signature of the	Invigilator
				(with date)	

COURSE CODE: 139

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Ch	ip breakers are used while machining	g	
	(A)	Ductile materials	(B)	Brittle materials
	(C)	Both (A) and (B) above	(D)	None of the above
2.	На	rdest tool material is		
	(A)	Cast Steel	(B)	High Speed Steel
	(C)	Diamond	(D)	UCON
3.	Abr	asive for grinding materials with hig	h tens	ile strength is
	(A)	Silicon carbide	(B)	Aluminum Oxide
	(C)	Diamond	(D)	Corundum
4.		ich one of the following is a thermal		
		Ultrasonic machining	(B)	
	(C)	Abrasive Jet machining	(D)	Laser Beam machining
5.	The	isothermal law is given by		
	(A)	p/v = constant	(B)	pv = constant
	(C)	v/T = constant	(D)	p/T = constant
6.		t can not be transferred from lower to nout any external force	emper	ature body to higher temperature bod
	(A)	Carnot theorm	(B)	Kelvin-Plank statement
	(C)	Clausius statement	(D)	Clausius inequality
7.	Whi	ch one of the following is considered	as a pu	re substance?
	(A)	Ammonia	(B)	Steam
	(C)	Air-Fuel mixture	(D)	Atmospheric Air
8.	Dry	air is the mixture of		
	(A)	O2 & N2	(B)	CO ₂ & O ₂
	(C)	He & O ₂	(D)	O ₂ , N ₂ , Ar, CO ₂
9.		forces of 7 kg and 8 kg respectively of orces if the angle between the two		
	(A)	13 kg	(B)	30 kg
	(C)	169 kg	(D)	None of the above

- 10. Direction of resultant forces
 - (A) 61.93
 - (B) 60.93
 - (C) -61.93
 - (D) -60.93

- 11. The sum of the interior angles of any regular polygon is
 - (A) (2n-4) 180
 - (B) (2n + 4) 180
 - (C) (2n-4) 90
 - (D) (2n + 4) 90

- Magnitude of resultant force _____
 - (A) 10 KN
 - (B) 30 KN
 - (C) -10 KN
 - (D) 20 KN

- 13. P is:
 - (A) Resultant
 - (C) Equilibrant

- (B) Resultant and equivalent
- (D) Nominal force
- 14. Convert the body under equilibrium to FB diagram

- (A) a
- (B) b
- (C) (
- (D) None of the above

15		block of weight a N is applied; th							
	(A)		(B)	18° 47′	(C)			(D)	20° 48′
16.	Na	me the rule which	h deter	mines solid	solubilit	y			
	(A)	Gibbs rule			(B)	Hall-Pet	ch effect	;	
	(C)	Hume-Rothery	y rule		(D)	Both (A)	and (B)		
17.	Gib	bs phase rule is	given b	y the equat	ion				
	(A)	P + F = C + 1	(B)	$\mathrm{P}{+}\mathrm{F}=\mathrm{C}$	(C)	F = P - C	-2	(D)	P+F=C+3
18.	Has	st alloy consists o	of						
	(A)	Copper and nic	ckel		(B)	Copper a	nd alum	inum	
	(C)	Molybdenum a	nd nick	cel	(D)	Nickel ar	nd alumi	num	
19.	The	second order pa	rtial di	ferential eq	uation is	said to be	elliptic,	if	
	(A)	$\mathrm{B^2-4~AC}=0$			(B)	$B^2 - 4$ AC	> 0		
	(C)	$B^2-4\ AC \leq 0$			(D)	$B^2 = -4 A$	C		
20.	One	dimensional hea	at equa	tion Ut = α	U _{xx} is				
	(A)	Elliptic							
	(B)	Parabolic							
	(C)	Hyperbolic							
	(D)	Elliptic if $\alpha > 0$	and Hy	perbolic if o	α < 0				
21.	Vano	der Walls equation	on of sta	ate is					
	(A)	(P+a/V2)(Vm-a)	= RT		(B)	(P+a/V2)(\	7m-c) =	RT	
	(C)	(P+a/V2)(Vm-d)	=RT		(D)	(P+a/V ²)(V	/m-b) =	RT	
22.	Otto	cycle consists of							
	(A)	Two adiabatic a	nd one	constant vo	lume & o	ne constar	it pressu	ire pr	ocess
	(B)	Two adiabatic a	nd two	constant vo	lume pro	cesses			
	(C)	Two constant pr	essure	and two rev	ersible a	diabatic pi	ocesses		
	(D)	One constant v	olume,	one const	ant pres	sure and	two re	versil	ole adiabatic

processes

	(A)	Isothermal compression	(B)	Isentropic compression
	(C)	Polytrophic compression	(D)	None of these
24.		s the temperature of air recorded by egins to condense	a therm	nometer when the moisture present in
	(A)	Dew point temperature	(B)	Dew point depression
	(C)	Dry bulb temperature	(D)	Wet bulb temperature
25.	Ben	ding moment at supports in case of s	simply s	upported beam is always
	(A)	More than unity	(B)	Less than unity
	(C)	Zero	(D)	Infinity
26.	Mon	ment of inertia for a circle		
	(A)	пд4/64	(B)	пд4/48
	(C)	πd ⁴ /12	(D)	пд4/128
27.	The	ratio of lateral strain to the linear st	rain is o	called
	(A)	Modulus of elasticity	(B)	Modulus of rigidity
	(C)	Bulk modulus	(D)	Poison's ratio
28.		ratio of the torques transmitted by a erial, length and weight is	hollow	and a solid shaft, both made of same
	(A)	$(n^2 + 1)/n \times square root of n^2 + 1$	(B)	$(n^2 + 1)/n \times \text{square root of } n^2 - 1$
	(C)	$(n^2 + 1)/n \times square root of n + 1$	(D)	$(n^2 + 1)/n$ + square root of $n^2 + 1$
29.		acceleration of the practical moving ven by	with sin	nple harmonic motion, at any instant
	(A)	ωx (B) ω^2	(C)	$\omega^{2}/2$ (D) $\omega^{3}/3$
30.	Whe	n a point moves along a straight line	its acce	leration will have
	(A)	Radial component only		
	(B)	Tangential component only		
	(C)	Coriolis component only		
	(D)	Radial & tangential component only		

T. 1	. 4 4 1	nen is not the property of the stiffness	matr	IX:			
	(A)	Symmetric matrix					
	(B)	Sum of elements in any column is e	qual t	o zero			
	(C)	Stable element					
	(D)	Determinant value is equal to zero					
48.	The	e size of the global stiffness matrix					
	(A)	Number of points * degree of freedo	m per	point			
	(B)	Number of node * degree of freedom	per p	point			
	(C)	Number of node * degree of freedom	per r	node.			
	(D)	None of the above					
49.	deri (x=0	a one dimensional finite element, the ivative with respect to x, v', are the roll, v=v'=0, and at the second node (x=x=0.5) is	nodal	variables. Given	that a	t the f	irst node
	(A)	1/8 (B) 1/4	(C)	1/2	(D)	1	
50.	Elec	ctro Magnetic flow meter is used for					
	(A)	electrically conductive fluids					
	(B)	electrically non-conductive fluids					
	(C)	magnetically conductive fluids					
	(D)	magnetically non-conductive fluids					
51.	In P	LC for input channel protection		is used.			
	(A)	Auto coupler	(B)	Diode			
	(C)	Transistor	(D)	All of the above			
52.	The	robot gripper movement is achieved b	y				
	(A)	Mechanical power transmission syst	ems				
	(B)	Pneumatic cylinder					
	(C)	Hydraulic cylinder					
	(D)	Electrical motors					
53.	PUN	IA Stands for					
	(A)	Plan using Man Assistance					
	(B)	Programmable Universal machine fo	r Asse	embly			
	(C)	Programmable Unmanned Machine	for As	sembly			
	(D)	Planning Unmanned Machine For as	sembl	ly			

54.				assumption in formulating the Linea ith the optimization of a function o
	(A) proportionality		(B)	additivity
	(C) multi objective		(D)	linearity
55.	In simplex method,			
	(I) The new basic variable	to be includ	ed is ca	alled "entering variable"
	(II) The variable which is to	be removed	d from	the basis is called "leaving variable"
	(A) Both I & II are true		(B)	Both I & II are false
	(C) I-true & II-false		(D)	II-true & I-false
56.	A feasible solution to a m (m+n-1) non-negative allocation			on problem that contains more than
	(A) Feasible solution		(B)	Non-feasible solution
	(C) Initial basic feasible solu	ution	(D)	None
57.				Transportation problem is said to be ains ———— non-negative allocations
	(A) m+n-1		(B)	m + n + 1
	(C) m-n-1		(D)	None
58.	In CPM network model, the start of the job is called	difference	betwee	n late start of the job and the early
	(A) Free slack		(B)	Total slack
	(C) (A) and (B)		(D)	None
9.	The PERT network model is			
	(A) Deterministic (B) Pr	obabilistic	(C)	(A) and (B) (D) None
0.	S1. Cetane number is the sam	e as octane	rating	
	S2. Cetane number is the oppo	site of octa	ne rati	ng.
	(A) S1 is right		(B)	S2 is right
	(C) S1 & S2 are right		(D)	S1 & S2 are wrong
1.	Multi plate clutches are used f	or transfer	of high	horse power mechanism
	(A) True		(B)	False
	(C) Either true or false		(D)	Not known

62.	Αf	ront stabilizer bar is used to			
	(A)	Increase load carrying cap	acity		
	(B)	Provide a softer ride			
	(C)	Stiffen the suspension to c	ontrol the body	roll	
	(D)	Prevent the sideward move	ement of the ax	de housing	
63.		en the front wheels are not p	parallel to each	other and moved further away at th	е
	(A)	Positive camber	(B)	Negative camber	
	(C)	Roll out	(D)	None	
64.	The	major content of biogas are			
	(A)	Methane and CO ₂	(B)	Ammonia and oxygen	
	(C)	Hydrogen and methane	(D)	None of the above	
65.		Meyer's expansion valve, the	expansion valv	ve is driven by an eccentric having a	1
	(A)	50°-60°	(B)	60° – 70°	
	(C)	70°-80°	(D)	80°-90°	
66.		tractive force in maximum k to the line of stroke is equa		when the angle of inclination of the	-
	(A)	90° and 225°	(B)	135° and 180°	
	(C)	180° and 225°	(D)	135° and 315°	
67.	In fr	ee vibrations, the velocity ve	ctor leads the	lisplacement vector by	
	(A)	п	(B)	п/2	
	(C)	n/3	(D)	211/3	
68.	Sens	itiveness of the governor is d	efined as the r	atio of the	
	(A)	Mean speed to the maximum	n equilibrium s	speed	
	(B)	Mean speed to the minimum	n equilibrium s	peed	
	(C)	Difference of the max. and n	nin. equilibriur	n speed to the mean speed	
	(D)	Sum of the max. and min. e	quilibrium spec	ed to the mean speed	
69.		n a material is subjected to fa nate tensile strength is	tigue loading,	the ratio of the endurance limit to the	
	(A)	0.20	(B)	0.35	
	(C)	0.50	(D)	0.65	

70.	per		al is 20	having a pressure of 1 N/mm ² . If the N/mm ² , then the thickness of meta
	(A)	5 mm	(B)	10 mm
	(C)	15 mm	(D)	25 mm
71.		o shafts of same length and mate meters is 2, then the ratio of their ar		e joined in series. If the ratio of the
	(A)	2 (B) 4	(C)	8 (D) 16
72.				oplied on a solid circular shaft. If the stress developed, then M is equal to
	(A)	T/2 (B) T	(C)	$2 \times T$ (D) d) $4 \times T$
73.		le designing a screw in a screw jac the screw are taken as	k again	st buckling failure, the end conditions
	(A)	Both the ends fixed		
	(B)	Both the ends hinged		
	(C)	One end fixed and the other end hi	inged	
	(D)	One end fixed and the other end fr	ee	
74.	In e	lectric resistance welding, pressure	applied	varies from
	(A)	1 to 5 MPa	. (B)	5 to 10 MPa
	(C)	10 to 25 MPa	(D)	25 to 55 MPa
75.	Whi	ch of the following spring is used in	a mech:	anical wrist watch?
		Helical compression spring	(B)	Spiral spring
	(C)	Torsion spring		Belleville spring
76.	brea		rns 10 e	of 12 kN/m and number of turns 20, each in both the parts. If the two parts resultant spring will be
	(A)	6 kN/m	(B)	12 kN / m
	(C)	24 kN/m	(D)	30 kN/m
77.	The	ratio of the mean diameter of the coi	l to the	wire diameter is known as
	(A)	Pitch	(B)	Spring index
	(C)	Resilience	(D)	None of the above

78	In	a partial journal bearing, the angle of	conta	ct of the hearing with the journal is
10.	(A)		(B)	
	(C)		(D)	
	(0)	270	(D)	300
79.	def			has the ability to accommodate shaft c deformation without excessive wear
	(A)		(B)	Embed ability
	(C)		(D)	Fatigue strength
80.		e flow of fluid over a body is in		andom fashion with components of
	(A)	Laminar flow	(B)	Turbulent flow
	(C)	Stream flow	(D)	Parallel flow
81.		ratio of the velocity of object and	the	velocity of sound of the medium is
	(A)	Mach Number	(B)	Crocco number
	(C)	Reynolds Number	(D)	Webber Number
82.	The	region in which the Mach number is a	lways	s greater than unity
	(A)	Sonic region	(B)	Incompressible region
	(C)	Supersonic region	(D)	Compressible region
83.	In ic	deal expansion process in turbine		
	(A)	Entropy increases		
	(B)	Entropy remains constant		
	(C)	Enthalpy remains constant		
	(D)	Temperature remains constant		
84.	The	Mach number at the throat of the conv	vergei	nt-divergent nozzle is
	(A)	M = 1	(B)	M = 0.5
	(C)	M = 0	(D)	M = 1.5
85.	In su	absonic region friction causes		
	(A)	Normal shock	(B)	Oblique shock
	(C)	Pressure drop	(D)	Pressure rise
			14000	

139

86.	Pra	andtl-Meyer relation is used to find o	out the _	before and after the shock
	(A)	Stagnation pressure	(B)	Stagnation temperature
	(C)	Fluid velocities	(D)	Densities
87.	Tu	rbojet and Ramjet engines can opera	te at	
	(A)	Subsonic speeds	(B)	Sonic speeds
	(C)	Supersonic speeds	(D)	Hypersonic speeds
88.	Act	temperature increases,		
00.	(A)	viscosity of a fluid increases		
	(B)	viscosity of a fluid decreases		
	(C)	viscosity of a liquid increase		
	(D)	viscosity of a liquid decreases		
	(D)	viscosity of a figure decreases		
89.	Baro	ometer is used to measure	pressur	e.
	(A)	absolute	(B)	gauge
	(C)	atmospheric	(D)	difference in
90.		value of Reynolds number in the cas	se of Lar	ninar flow is
	(A)	less than 2000		
	(B)	above 4000		
	(C)	between 2000 and 4000		
	(D)	less than 1000		
0.1	Data			
91.		ry actuators are also called		
		fixed displacement pumps		
	(B)	variable displacement pumps		
	(C)	hydraulic cylinders		
	(D)	hydraulic motors		
2.	Cavi	tations in pumps occurs when		
	(A)	the suction pressure is very high		
	(B)	the temperature is very low		
	(C)	the suction pressure is very low		
	(D)	the temperature is very high		

93.	The	e valve that is suitable for a Single-ac	ting cy	linder is a valve.
	(A)	4/2 way	(B)	4/3 way
	(C)	5/3 way	(D)	3/2 way
94.	The		once t	he accumulator has been fully charged
	(A)	Solenoid	(B)	Pressure switch
	(C)	Relay	(D)	Intensifier
95.	The	e ratio of energy transferred by convec	ction to	that by conduction is called
	(A)	Stanton number	(B)	Nusselt number
	(C)	Biot number	(D)	Preclet number
96.	Bub	bles originate from the heating surfa	ce duri	ing
	(A)	Saturated boiling	(B)	Sub-cooled boiling
	(C)	Evaporation	(D)	Condensation
97.		ratio of molar density of species to	o the t	total molar density of the mixture is
	(A)	Molar concentration	(B)	Mass fraction
	(C)	Mole fraction	(D)	Fick's law
98.	Spu	r gears are used for		
	(A)	connecting skew shafts		
	(B)	connecting intersecting shafts		
	(C)	transmitting power from one shaft t	o anot	her shaft
	(D)	connecting two parallel shafts to tra	nsmit	power
99.	Lase	er Beam Machining economically effec	ctive to	drill holes of diameter
	(A)	0.005 - 1.27 mm	(B)	0.05 - 12.7 mm
	(C)	0.0005 - 0.0127 mm	(D)	5 – 120 mm
100.	Reac	tion turbines have an efficiency of		
	(A)	75% (B) 90%	(C)	70% . (D) 80%