ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (MECHANICAL ENGINEERING)

COURSE CODE: 139

Register Number :		
		Signature of the Invigilator (with date)
	· · · · · · · · · · · · · · · · · · ·	PRINCIPAL AND ALL MANAGEMENT AND A

COURSE CODE: 139

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	is	on dimensional number generally asso	ciated	with natural convection heat transfe
	(A)	Grashoff number	(B)	Nusselt number
	(C)	Weber number	(D)	Prantdl number
2.	The	rmal conductivity of solid metals with	rise ii	n temperature normally
	(A)	increases		
	(B)	decreases		
	(C)	remains constant		
	(D)	may increase or decrease depending	on ten	nperature
3.	Whi	ch of the following has least value of c	onduc	tivity
	(A)	glass	(B)	water
	(C)	rubber	(D)	air
4.	Emi	ssivity of a white polished in comparis	on to	black body is
	(A)	higher	(B)	lower
	(C)	same	(D)	depending on the shape of the body
5.		ne temperature of a solid surface changinges in the ratio of	ges fro	om 27°C to 627°C, then the emissive
	(A)	3	(B)	9
	(C)	27	(D)	81
6.	Long will	g mean temperature difference in case be	of co	unter flow compared to parallel flow
	(A)	same	(B)	more
	(C)	less	(D)	none of the above
7.	Delt	a iron occurs at a temperature of		
	(A)	room temperature	(B)	above melting point
	(C)	between 1400 °C and 1539 °C	(D)	between 910°C and 1400°C
				•

ο.	Froc	ess of austempering results in									
	(A)	formation of bainite structure									
	(B)	carburised structure									
	(C)	(C) martenistic structure									
	(D)	relieving of stress throught the compo	onent								
9.	Melt	ting point of iron is									
	(A)	1530°C	(B)	1601 °C							
	(C)	1712°C	(D)	1131 °C							
10.	Acid	ic solution is one which has pH value									
	(A)	greater than 7	(B)	less than 7							
	(C)	equal to 7	(D)	none of the above							
11.	Ferr	omagnetic alpha iron exists in tempera	ature	range of							
	(A)	below 723°C	(B)	770-910°C							
	(C)	1400 – 1539°C	(D)	above 1539°C							
12.	Ball	s for ball bearing are made of									
	(A)	mild steel	(B)	cast iron							
	(C)	carbon-chrome steel	(D)	high carbon steel							
13.	Corr	cosion resistance of steel is increased by	y addi	ng							
	(A)	chromium and nickel	(B)	aluminium and zinc							
	(C)	tungsten and sulphur	(D)	nickel and molybdenum							
14.	Age	– hardening is related with									
	(A)	stainless steel	(B)	gun metal							
	(C)	duralumin	(D)	cast iron							
15.	A flu	iid is said to be ideal, if it is									
	(A)	incompressible	(B)	inviscous							
	(C)	viscous and incompressible	(D)	inviscous and incompressible							

16.	For pipes, laminar flow occurs when Reynolds number is								
	(A)	less than 2000	(B)	between 2000 and 4000					
	(C)	more than 4000	(D)	less than 4000					
17.	Cor	rosion of iron is retarded by							
	(A)	the presence of salts							
	(B)	low pH conditions	· in						
	(C)	high pH conditions							
	(D)	both the presence of salts and high p	H con	ditions					
18.	Rou	ting in production planning and contro	ol refei	es to					
	(A)	A) sequence of operations to be performed							
	(B)	balancing of load on machines							
	(C)	authorization of work to be performed							
	(D)	progress of operation to be performed	i						
19.	Ecor	nomic order quantity is the quantity a	t whicl	n the cost of carrying is					
	(A)	minimum	(B)	cost of overstocking					
	(C)	less than the cost of ordering	(D)	equal to the cost of ordering					
20.	Pote	entiometer sensors are used to measur	e						
	(A)	temperature	(B)	pressure					
	(C)	displacement	(D)	liquid level					
21.	In el	lectro chemical machining the metal is	remo	ved by					
	(A)	Dissolution	(B)	evaporation					
	(C)	sputtering	(D)	shearing					
22.	The	sintered properties in powder metallu	rgy de	pend upon					
	(A)	porosity	(B)	volume					
	(C)	density	(D)	all the above					
23.	Whi	ch moulding process is preferable for l	arge a	nd heavy casting?					
	(A)	Green sand moulding	(B)	Skin dried moulding					
	(C)	Pit moulding	(D)	Shell moulding					

24.	1 ne	operation of mili	ing tv	vo sides of a work	c piec	e simunameousiy	is caneu
	(A)	Gang milling			(B)	Climb milling	
	(C)	Square milling			(D)	Straddle milling	g
25.	Valu	ue of coefficient of	f frict	ion in cold formir	ıg		
	(A)	0.5	(B)	0.2	(C)	0.1	(D) 0.6
26.	The	size of shaper is	speci	fied by			
•	(A)	Length of strok	e		(B)	Height of table	
	(C)	Maximum size	of too	l	(D)	Ratio of forward	l to return stroke
27.	Ede	n – Rolt compara	tor is	a popular instru	ment	for calibration of	
	(A)	slip gauges			(B)	vernier	
	(C)	micrometer			(D)	sine bar	
28.	The	helix angle for si	ngle l	nelical gears rang	ge froi	m	,
	(A)	5° to 10°			(B)	10° to 15°	
	(C)	20° to 35°			(D)	50° to 60°	
29.	Whi	ch one of the follo	wing	is not a direct su	ırface	roughness meas	uring instrument?
	(A)	Tomlinson surfa	ace m	eter	(B)	Taylor - Hobson	n Taysurf
	(C)	Wallace surface	dyns	mometer	(D)	Profilometer	
30.		ater flexibility in eved in	the	context of work	distr	ibution to machi	ines and workers is
	(A)	process layout			(B)	cellular layout	
	(C)	mixed layout			(D)	fixed position la	yout
31.		comachining is th	ie bas	ic technology for	fabri	cation of micro-co	omponents of size in
	(A)	1 to 500 microm	eters		(B)	600 to 700 micro	ometers
	(C)	750 to 900 micr	omete	ers	(D)	850 to 950 micro	ometers
32.	Segr	mental chips are	forme	d during machin	ing		
	(A)	cast iron			(B)	mild steel	
	(C)	high speed steel	l		(D)	high carbon stee	el

33.	Dril	ling is an example of			
	(A)	orthogonal cutting	(B)	oblique cutting	•
	(C)	simple cutting	(D)	uniform cutting	g
34.	The	work or surface speed for cylindrical	grindir	ng varies from	
	(A)	5 to 10 m/min	(B)	10 to 20 m/min	ı
	(C)	20 to 30 m/min	(D)	40 to 60 m/min	ı
35.	Stra	in energy is the			
	(A)	energy stored in a body when strain	ned with	nin elastic limits	
	(B)	energy stored in a body when strain	ed upto	the breaking of	a specimen
	(C)	maximum strain energy which can	be store	ed in a body	
	(D)	proof resilience per unit volume of a	nater:	ial	
36.	The	equation for relationship between E,	G and I	ζ is	
	(A)	$E = \frac{3KG}{K + 9G}$		$E = \frac{3KG}{9K + G}$	
	(C)	$E = \frac{9KG}{K + 3G}$	(D)	$E = \frac{9KG}{3K + G}$	
37.	_	pe of diameter 800 mm contains fluingth is 100N/mm², the thickness of the		_	N/mm². If the tensile
	(A)	16 mm (B) 4 mm	(C)	8 mm	(D) 10 mm
38.	Bear	ms with four unknown reaction is			
	(A)	In – Determinate Beams	(B)	Determinate Be	eams
	(C)	Propped beams	(D)	Im-Propped bea	ams
39.	The	ultimate tensile stress is the ratio of			
	(A)	Maximum area and load	(B)	Maximum load	and area
	(C)	Maximum stress and strain	(D)	None of the abo	ove
40.	Carr	riage springs are also known as			
	(A)	Open coiled spring	(B)	Closely coiled s	pring
	(C)	Semi-elliptical type leaf spring	(D)	Fully-elliptical	type leaf spring
139		6			

Euler's formula holds good only for 41. short columns **(B)** long columns (A) weak columns both short and long columns (D) A steel bar of 5 mm is heated from 15° C to 40° C and it is free to expand. The bar will 42. induce (B) shear stress (A) no stress tensile stress (D) compressive stress In the torsion equation $\frac{T}{J} = \frac{\tau}{R} = \frac{C\theta}{l}$ the term J/R is called Section modulus (A) Shear modulus **(B)** Polar modulus None of the above (D) (C) The point of contraflexure is a point where 44. bending moment changes sign shear force changes sign **(B)** (A) bending moment is maximum shear force is maximum (D) If the tearing efficiency of a riveted joint is 50%, then ratio of rivet hole diameter to the pitch of rivets is (B) 0.3 (A) 0.2(D) 0.6 0.5 (C) When a body is subjected to a direct tensile stress (σ_x) in one plane accompanied by a 46. simple shear stress (τ_{xy}) , the minimum normal stress is (B) $\frac{\sigma_x}{2} - \frac{1}{2} \sqrt{\sigma_x^2 + 4\tau_{xy}^2}$ (A) $\frac{\sigma_x}{2} + \frac{1}{2} \sqrt{\sigma_x^2 + 4\tau_{xy}^2}$ (D) $\frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$ (C) $\frac{\sigma_x}{2} + \frac{1}{2} \sqrt{\sigma_x^2 - 4\tau_{xy}^2}$ If the resultant of two equal forces has the same magnitude as either of the forces, 47. then the angle between the two forces is

30°

90°

(A)

(C)

60°

120°

(B)

(D)

48.	The	unit of angular a	accele	ration is					
	(A)	N-m				(B)	m/s		
	(C)	m/s^2				(D)	$ m rad/s^2$		
49.		force required to le with the incline				_	ane will be miningle of friction.	mum	if it makes an
	(A)	Equal to				(B)	Less than		
	(C)	Greater than				(D)	None of the above	ve	
50.	Whe	en the spring of a	watc	h is wou	nd, it wil	ll poss	sess		
	(A)	Strain energy				(B)	Kinetic energy		
	(C)	Heat energy				(D)	Electrical energ	y	
51.	One	joule is equal to							
	(A)	0.1 N-m	(B)	1 N-m		(C)	10 N-m	(D)	100 N-m
52.	Non	-coplaner non-cor	ıcurre	ent forces	s are tho	se for	ces which		
	(A)	meet at one poir	nt, bu	t their li	nes of ac	tion d	lo not lie on the s	ame	plane
	(B)	do not meet at o	ne po	int and t	their line	es of a	ction do not lie o	n the	same plane
	(C)	do not meet at o	ne po	int but t	heir line	s of a	ction lie on the sa	ıme j	plane
	(D)	none of the abov	⁄e						
53.							e material where te strength of the		
	(A)	elastic strength				(B)	yield strength		
	(C)	shear strength				(D)	none of the above	е	
54.	coeff						given byouter radius of c		•
	(A)	$\frac{1}{3}\mu W \left[\frac{R^3 - r^3}{R^2 - r^2} \right]$				(B)	$\mu W \left[\frac{R^3 - r^3}{R^2 - r^2} \right]$		
	(C)	$2\mu W \bigg[\frac{R^3 - r^3}{R^2 - r^2} \bigg]$				(D)	$\frac{2}{3}\mu W \left[\frac{R^3 - r^3}{R^2 - r^2} \right]$		

	(A)	$\sqrt{\frac{T}{m}}$	(B)	$\sqrt{rac{T}{2m}}$	(C)	$\sqrt{\frac{T}{3m}}$	(D) $\sqrt{\frac{T}{12m}}$
56.	Whi	ch of the following	ng sta	tement is correc	t for g	ears?	
	(A)	The addendum	is les	s than dedendu	m		
	(B)	The pitch circle	e dian	neter is equal to	the pr	oduct of module	and number of teeth
	(C)	The pitch circle	is al	ways greater tha	an the	base circle	
	(D)	all of the above	!				
57.	Alle	n bolts are		•			
	(A)	Self locking bol	ts				
	(B)	Provided with h	nexag	onal depression	in hea	ıd	
	(C)	Uniform streng	th bo	lts			
	(D)	Designed for sh	ock l	oad			
58.	The	product of the di	amet	ral pitch and cir	cular j	pitch is equal to	
	(A)	1	(B)	1/n	(C)	n	(D) 2n
59 .	The	groove angle of t	he pu	lley for rope dri	ve is u	sually	
	(A)	45°	(B)	30°	(C)	20°	(D) 60°
60.	The	working fluid in	refrig	geration cycle is			
	(A)	refrigerator	(B)	refrigerant	(C)	absorbent	(D) lubricant
61.	The	taper on a rectar	ngulai	r sunk key is			
	(A)	1 in 16	(B)	1 in 32	(C)	1 in 48	(D) 1 in 100
62.	A ty	pe of brake comn	nonly	used in motor c	ars is a	a	•
	(A)	shoe brake			(B)	band and block	k brake
	(C)	band brake			(D)	internal expan	ding brake
63.		processes occurri system, are know	_	open system wh	nich pe	ermit the transfe	er of mass to and from
	(A)	flow processes			(B)	non-flow proce	sses
	(C)	adiabatic proces	sses		(D)	isothermal pro	cesses
							100

For maximum power, the velocity of the belt will be

55.

64.	The	compression rat	tio for	petrol engine	es is				
	(A)	4 to 6			(B)	5 to 8			
	(C)	18 to 22			(D)	25 to 30			
65.				•	walls of s	ame thickne	ess having their ther	mal	
	conc	luctivities $K_1 = 2$	$2K_2$ w	ill be					
	(A)	2			(B)	1			
	(C)	0.3			(D)	0.5			
66.	Mor	se test is used to	test t	he performa	nce of				
	(A)	Two stroke eng	gines		(B)	Four stroke	e engines		
	(C)	Multi cylinder	engine	es	(D)	Single cylin	der engine		
67.		brake power of er is 125000 W a		ngine whose	e mechani	ical efficienc	y is 80% and indica	ated	
	(A)	10 kW	(B)	10000 kW	(C)	100 kW	(D) 150 kW		
68.	Effic	ciency of Diesel c	ycle d	epends on					
	(A)	Compression ra	atio						
	(B)	Cut off ratio							
	(C)	Compression ra	atio an	d cut off rati	io				
	(D)	Cut off and pre	ssure	ratio					
69.	A ce	rtain gas has $C_{\scriptscriptstyle p}$, valu	e of 1968 J/k	g K and (C_v value of 1	507 J/kg K. The valu	e of	
	R is								
	(A)	$0.461~\mathrm{KJ/kg~K}$			(B)	1307 J/kg K			
	(C)	1			(D)	461 KJ/kg F	ζ		
70.	Fros	t on cooling coils	}						
	(A)	Increases heat	transf	er					
	(B)	Improves COP	of the	system					
	(C)	C) Reduces power consumption							
	(D)	Acts as insulati	ion, in	creasing pow	er consun	nption			
139				1	10				

71.	A ir	ntensive property of a system is one v	whose va	alue							
	(A)	Depends on the mass of the system	Depends on the mass of the system, like volume								
	(B)	Does not depends on the mass of the system, like temperature, pressure etc.,									
	(C)	Is not dependent on the path follow	ved but	on the state							
	(D)	is dependent on the path followed and not on the state									
72.	Mod	derator in nuclear plants is used to									
	(A)	Reduce temperature									
	(B)	Extract heat from nuclear reaction	Extract heat from nuclear reaction								
	(C)	Control the reaction									
	(D)	Cause collision with the fast movin	g neutr	ons to reduce their speed							
73.	Sup	er heating of steam is done at									
	(A)	Constant volume	(B)	Constant pressure							
	(C)	Constant temperature	(D)	Constant enthalpy							
74.		mollier chart, free expansion or osphere is represented by	throttli	ing process from high pressure to							
	(A)	Horizontal straight line	(B)	Vertical straight line							
	(C)	Curved line	(D)	None of the above							
75 .	A co	mpressor at high altitude will draw									
	(A)	More power	(B)	Less power							
	(C)	Same	(D)	Dependent on the other factors							
76.	The	workdone factor for an axial compres	ssor var	ies from							
	(A)	0.5 to 0.75	(B)	0.6 to 0.8							
	(C)	0.82 to 0.73	(D)	0.98 to 0.85							
77.	Lam	inar flow changes to Turbulent flow	when								
	(A)	Diameter of pipe is decreased									
	(B)	Velocity is increased									
	(C)	Viscosity of fluid is increased									
	(D)	Velocity is decreased									

	(A)	$Q = \frac{ALN}{60}$			(B)	$Q = \frac{2 ALN}{60}$,
	(C)	Q = ALN			(D)	Q = 2ALN	
86.		tangential velocen by	city of	f ideal fluid at a	ny po	oint on the surfa	ace of the cylinder is
	(A)	$u_{\theta} = \frac{1}{2}U\sin\theta$			(B)	$u_{\theta} = U \sin \theta$	
	(C)	$u_{\theta} = \frac{1}{2}U\cos\theta$			(D)	None of the abo	ove
87.	The	boundary layer	separa	ation takes place	if		
	(A)	Pressure gradie	ent is	zero	(B)	Pressure gradie	ent is +ve
	(C)	Pressure gradio	ent is	negative	(D)	None of the abo	ove
88.	Soni	c flow means					
	(A)	Mach number <	< 1.0		(B)	Mach number >	> 1.0
	(C)	Mach number =	= 1.0	,	(D)	None of the abo	ove
89.	One	nm is equal to					
	(A)	10-3	(B)	10-9	(C)	10-6	(D) 10 ⁻¹⁰
90.	Diffi	cult to monitor a	nd ve	ry dangerous for	m of c	orrosion	
	(A)	Galvanic	(B)	Pitting	(C)	Crevice	(D) Stress
91.	Corr	rosion of metals i	nvolv	es			
	(A)	Physical reaction	ns		(B)	Chemical react	ions
	(C)	Both			(D)	None of the abo	ve
92.	The	following factors	play	vital role in corre	osion j	process	
	(A)	Temperature			(B)	Solute concentr	ation

The discharge through a single acting reciprocating pump is

85.

(C) Both

(D) None of the above

93.	Rect	cilinear motion of piston is converted in	to ro	tary by
	(A)	Cross head	(B)	Slider crank
	(C)	Connecting rod	(D)	Gudgeon pin
94.	A ki	nematic chain requires at least		
	(A)	2 links and 3 turning pairs	(B)	3 links and 4 turning pairs
	(C)	4 links and 4 turning pairs	(D)	5 links and 4 turning pairs
95.	Berr	noulli's theorem deals with the law of co	onserv	vation of
	(A)	Mass	(B)	Momentum
	(C)	Energy	(D)	None of the above
96.	Whi	ch of the following forms of pure carbor	is kn	own as Buckyball?
	(A)	Fullerene	(B)	Diamond
	(C)	Graphite	(D)	None of the above
97.	In E	DM, the material of the tool is		
	(A)	Diamond	(B)	High speed steel
	(C)	Copper	(D)	Tungsten carbide
98.	The	machining process which needs vacuur	n for i	ts operation is
	(A)	Electron beam machining	(B)	Electrical discharge machining
	(C)	Electro chemical machining	(D)	Plasma machining
99.	Whi	ch of the following statement is correct	about	EDM machining?
	(A)	It can machine hardest materials		
	(B)	It produces high degree of surface fini	sh	
	(C)	The tool and work are never in contac	t with	each other
	(D)	all of these		
100.	The	heat treatment process used for softeni	ng ha	rdened steel is
	(A)	Carburising	(B)	Normalising
	(C)	Annealing	(D)	Tempering