ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE CODE: 141

Register Number :	
	Signature of the Invigilator
	Signature of the Invigilator (with date)

COURSE CODE: 141

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

•	(C)	25 m/s to 50 m/s		(D)	50 m/s to 75 m/s
2.		ind turbine extracts maxid reduces to	mum powe	r froi	n wind, when the downstream wind
	(A)	one-third that of upstream	n wind	(B)	half that of upstream wind
	(C)	two-third that of upstream	n wind	(D)	zero
3.	If th	e speed of a wind stream r	emains unc	hange	ed while passing through the rotor
	(A)	a large power will be gen	erated		
,	(B)	zero power will be genera	ted		*
	(C)	the flow is known as stall	ed flow		
	(D)	the speed of the rotor wil	l be very hig	gh	
4.	Grid	l – connected wind generat	ors usually	have	maximum penetration of
	(A)	10 to 20 % (B) 20	to 30 %	(C)	30 to 40 % (D) 40 to 50 %
5.	Stal	l regulation is used with tu	rbines		
	(A)	having diameters less the	n 25 m	(B)	having diameters more than 25 m
	(C)	having rotors of large sol	dity	(D)	having rotors with pitch control
6.	Whe	en VAR flow in a circuit is i	ncreased, l	08568	in the circuit are
	(A)	reduced			
	(B)	not changed	•		
	(C)	reduced if the circuit is in	ductive an	d incr	eased if the circuit is capacitive
	(D)	increased			
7.	The	equality constraint, when	the transm	ission	line losses are considered is given by,
	(A)	$\sum_{i=1}^n P_{Gi} - P_{Loss} = 0$		(B)	$\sum_{i=1}^{n} P_{Gi} - P_D = P_{Loss} + P_G$
	(C)	$\sum_{i=1}^n P_{Gi} - P_D = 0$	•	(D)	$\sum_{i=1}^{n} P_{Gj} = P_D + P_{Loss}$
8.		fuel cost of a unit is given IW. The incremental fuel	-		G +0.1 P ² G where P _G is the unit output of 100 MW is
	(A)	60 Rs. / MWh		(B)	40 Rs. / MWh
	(C)	100 Rs. /MWh		(D)	20 Rs. / MWh
141			2		
			-		

The range of wind speed suitable for wind power generator is

(B) 5 to 25 m/s

1.

(A)

0 to 5 m/s

9.	For	economic schedule of a load of 180	MW, the	plant outputs P ₁ and P ₂ are given by
	(A)	$P_1 = 100 \text{ MW}; P_2 = 80 \text{ MW}$	(B)	$P_1 = 90 \text{ MW}; P_2 = 90 \text{ MW}$
	(C)	$P_1 = 80 \text{ MW}; P_2 = 100 \text{ MW}$	(D)	$P_1 = 120 \text{ MW}; P_2 = 60 \text{ MW}$
10.	To d	letermine the units that should ope	erate for a	particular load is the problem of
	(A)	Unit commitment	(B)	Optimal load scheduling
	(C)	Economic dispatch	(D)	Optimal power flow
11.	In the	···	ire arrang	ged to commit the load demand in the
	(A)	Ascending costs of units	(B)	Descending costs of units
	(C)	Either (A) or (B)	(D)	Independent of costs of units
12.		he optimization problem of a hyd sen as independent variables?	ro-therm	al system, which of the following are
	(A)	Water storages in all sub-interva	ls except	one sub-interval
	(B)	Water inflows in all sub-intervals	except o	ne sub-interval
	(C)	Water discharges in all sub-inter	vals excep	ot one sub-interval
	(D)	Hydro and thermal generations discharge at one sub-interval	, water	storages at all intervals, and water
13.	The	basic function of LFC is		·
	(A)	To maintain frequency for variat	ons in re	al-power demand
	(B)	To maintain voltage for variation	s in real-	power generation
	(C)	To maintain both voltage and fre	quency fo	r variations in real-power demand
-	(D)	To maintain both voltage and fre	quency fo	r variations in real-power generation
14.	The	primary control loop in generator	control is	
	(A)	Linkage mechanism	(B)	Fly-ball speed governor
	(C)	Speed changer	(D)	Hydraulic amplifier
15.	Dan	nping of frequency oscillations for a	two-area	a system is more with
	(A)	Low-R	(B)	R = ∞
	(C)	High R	(D)	Independent of R
16.	For	synchronous condensers, the p.f. in	nproveme	ent apparatus should be located at
	(A)	Sending end	(B)	Receiving end
	(C)	Location is not important	(D)	Middle of the line
			•	•

17.	In s	ynchronous coi	ndensers	, leading VAF	ks are p	roduced by		*					
	(A)	Increasing fie	eld curre	nt	(B)	Decreasing	field curre	ent					
	(C)	Increasing sp	eed of th	ne machine	(D)	Decreasing	speed of t	he machine					
18.	VAF	ks always flow	from	·		8							
-	(A) Points of higher angle to points of lower angle												
	(B)	Points of low	er angle	to points of h	igher ar	ngle							
	(C)	Points of high	ner volta	ge to points o	f lower	voltage							
	(D)	Points of low	er voltag	ge to points of	higher	voltage		· <u>-</u>					
19.	In c	ontingency ran	king, th	e severest fau	lt will b	e ranked							
	(A)	1			(B)	Last		·					
	(C)	Will depend	on the ty	pe of fault	(D)	Will depend	on the du	ıration of fault					
20.	The	smaller the la	gging rea	active power	drawn b	y a circuit, it	s p.f. will	be					
	(A)	Better	(B)	Poorer	(C)	Unity	(D)	Zero					
21.	The	turn-on time o	of SCR w	ith inductive	load is	30 µs. The pu	ılse train	frequency is 3.0					
		with mark / s		4		, -							
				10									
	(A)	Turn-on		•				, '					
	(B)	Not turn-on		_									
	(C)	Turn-on if in						* .					
	(D)	Turn-on if pu	use frequ	uency is incre	ased to	two times.							
22.		main reason f gering circuit i		cting a pulse	transfo	rmer at the o	utput sta	ge of a thyristor					
	(A)	Amplify the p	power of	triggering pu	lse								
	(B)	Provide elect	rical isol	lation									
	(C)	Reduce the t	urn-on ti	ime of the thy	ristor								
	(D)	Avoid spurio	us trigge	ring of thyris	tor due	to noise							
23.	sup is fo	plying a non ze	ero torqu o zero at	ie. For stead	y state (peration the	motor, ar	exited dc motor mature current aces the voltage					
	(A)	Equal to the	instanta	neous value o	of the ac	phase voltag	ge						
	(B)	Equal to the	instanta	neous value o	of the m	otor back e.m	ı.f	• .					
	(C),	Arbitrary											
	(D)	Zero											
141	,				4								

24.		very high ar erred?	ıd ultra	high fr	equenc	y api	plications,	which of the	ne followi	ng is
	(A)	SIT	(B)	IGBT	-	(C)	MOSFET	(D)	BJT	•
25.		SMPS circuit o	operating	g at 20 l	Hz to	100 k	Hz range u	ises which o	of the follo	wing
	(A)	Thyristor	(B)	TRIAC		(C)	UJT	(D)	MOSFE'	Г
26.	The	converter tha	t can ope	erate in l	both 3-p	phase	and 6-phas	se is		
	(A)	6-phase, full	converte	r		(B)	6-phase, s	emi convert	er	
	(C)	3-phase, full	converte	r	·	(D)	3-phase, s	emi convert	er	
27.	If a	single-phase v	oltage co	nverter	feeds a	n indı	ection moto	r and heate	r then	
	(A)	In both the lo	oads, fun	damenta	al and h	armo	nics are us	eful		
	(B) In both the loads, only fundamental is useful									
	(C)	In induction and harmoni			amenta	al is u	sed and in	heater, bot	h fundam	ental
	(D) In induction motor both fundamental and harmonics are useful and in heater only fundamental is useful									
28.		yristorised, the							d that dra	aws a
	(A)	An rms value	e equal to	the dc	load cu	rrent				
	(B)	An average v	alue equ	al to the	de loac	d curr	ent			
	(C)	A peak value	equal to	de load	current	t	•			
	(D)	A fundamen current	tal frequ	iency co	mpone	nt wł	nose r.m.s	value is eq	ual to de	load
29.	In an AC motor control, the ratio of voltage to frequency is maintained constant in order to									
	(A)	Make maxim	um use	of magne	etic circ	uit				
	(B)	Maximize the	e current	drawn i	from th	e sup	ply to provi	de torque		
	(C)	Make minim	um use c	of magne	etic circ	euit		٠		
	(D)	None of the a	bove	_						
30.	If sp	eed of a dc sh	unt mote	or is incr	eased a	above	its rated sp	eed, then it	s counter	emf
	(A)	increases				(B)	decreases			
	(C)	remains uncl	hanged			(D)	first incre	eases and th	en decreas	ses
31.	The	function of a	lc motor	starter i	s to		·			
	(A)	start the dc r	notor			(B)	limit the	starting cur	rent	
	(C)	increase the	starting	torque		(D)	avoid dips	s in the supp	oly voltage	•
										4 4 4

1				
32.		vnchronous motor, fed from infinite bu eld current causes an increase = in the		
1 .	(A)	deliver reactive power and active pow	ver to	the bus
	(B)	absorb reactive power and active pow	er to	the bus
	(C)	absorb reactive power from the bus a	nd de	liver active power to the bus
	(D)	deliver reactive power to the bus and	abso	rb active power from the bus
33.		alient – pole synchronous motor is tation is reduced to zero	runi	ning with normal excitation. If the
	(A)	it becomes an induction motor	(B)	it becomes a reluctance motor
	(C)	it remains a synchronous motor	(D)	the motor would stop
34.		torque —slip characteristics of a po ar at small values of slip, because in th		
	(A)	the effective rotor-circuit resistance	ce is	very large compared to the rotor
	(B)	the rotor resistance is equal to the st	ator r	esistance
	(C)	the rotor resistance is equal to the ro	tor re	eactance
	(D)	the rotor reactance is equal to the sta	itor r	eactance
35.	The	most common application of 3- phase i	nduc	tion generator can be in a
	(A)	steam-power station	(B)	hydro-power station
	(C)	wind-power station	(D)	nuclear -power station
36.	A si	gnal is an energy signal if		
	(A)	$\mathbf{E} = 0, \mathbf{P} = 0$	(B)	E = 0, $P = finite$
	(C)	E = finite, P = 0	(D)	E = finite, P = 0
37.	Y(n)	y = x(2n) is for a		
	(A)	time-invariant system		
	(B)	time varying, dynamic system	•	•
	(C)	linear, time varying, dynamic system	ı	
	(D)	linear, time-invariant, static system		
38.	The	circular convolution of $x(n) = \{1,2,1\}$ as	nd h(r	$a(1) = \{2,1,2\}$ is
·	(A)	$\{7,7,6\}$ (B) $\{6,7,6\}$	(C)	{6,7,6,0} (D) {0,7,7,6}
39.	If x($(n) \stackrel{z_T}{\longleftrightarrow} X(z)$, then the initial value the	ieorei	m states that $x(0) =$
•			(B)	$\operatorname{Lt}^{X(z)}$
	(T.Z.)		(1)	Z→1 ,
	(C)	$\operatorname{Lt}^{X(z)}$	(D)	$\operatorname{Lt}_{z\to z} X(z)$
		• 7™		<i>₽</i> - 7 · ·

- The Z-transform of a signal with X(s) = (1/s) is
 - (A) $\frac{1}{1-Z^{-1}}$ (B) $\frac{1}{1-Z}$ (C) $\frac{1}{1+Z^{-1}}$

- A system whose output y(n) at time n depends only on present and past input values is called a
 - (A) recursive system

(B) non-recursive system

causal system

- non-causal system
- The DTFT of a sequence x(n) is defined as X(0) =
 - (A) $\sum_{n=0}^{\infty} x(n)e^{jan}$

(B) $\sum_{n=1}^{\infty} x(n)e^{-jan}$

(C) $\sum_{n=0}^{\infty} x(n)e^{jan}$

- (D) $\sum_{n=0}^{\infty} x(n)e^{-jan}$
- The number of complex multiplications involved in the computation of 256-point DFT 43. by radix -2 FFT is
 - (A) 256
- **(B)** 1024
- (C) 512
- (D) 128
- In the bilinear transformation, the relation between s and z is
 - (A) $s = \frac{2}{T} \left(\frac{1+z^{-1}}{1-z^{-1}} \right)$

(B) $s = \frac{1}{T} \left(\frac{1 + z^{-1}}{1 - z^{-1}} \right)$

(C) $s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$

(D) $s = \frac{1}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$

- 45. Interpolation results in
 - (A) decrease in sampling rate
- (B) increase in sampling rate
- no change in sampling rate
- (D) random change in sampling rate
- Which of the following characteristics are true for a RISC processor? 46.
 - Smaller control unit (A)
 - Small instruction set **(B)**
 - Short program length (C)
 - Less traffic between CPU and memory (D)
- Which of the following is an undesirable dynamic characteristic of an instrument?
 - (A) Reproducibility

Dead zone **(B)**

(C) Time lag

Static error **(D)**

48.	Flap	per nozzle is use	d in a	/an	contro	ller.		
	(A)	electronic	(B)	hydraulic	(C)	pneumatic	(D)	none of these
49.	The	closed loop pole	of a st	able second o	rder sys	tem could be		
	(A)	both real and p	ositive	•				
	(B)	complex conjug	ate wi	th positive re	al parts	•		
	(C)	both real and n	egativ	е				
	(D)	one real positiv	e and	the other rea	l negativ	/e		
50.	Smo	ke density of the	flue g	as going out	of the ch	imney is measu	red by	a [·]
	(A)	polarograph			(B)	thermal conduc	ctivity	meter
	(C)	photo electric c	ell		(D)	chromatograph	ì	
51.	Whi	ch of the followin	ıg cont	rollers has ti	ne least i	maximum devia	tion ?	
	(A)	P-controller			(B)	P-I controller		
	(C)	P-I-D controller	r		(D)	P-D controller		
52.		transfer function is the derivative		PID controlle				reset) time and
	(A)	$K_C(1+\tau_i s+\tau_D)$	8		(B)	$K_C \left(1 + \frac{1}{\tau_i s} + \tau_D \right)$	8	
	(C)	$K_{C}\left(1+\tau_{i}s+\frac{1}{\tau_{D}s}\right)$			(D)	$K_{C}\left(1+\frac{1}{\tau_{i}s}+\frac{1}{\tau_{D}}\right)$	<u>,</u>	
53.	Whi	ch of the followin	ig ther	mocouples ca	ın measu	ire the maximui	n temp	erature?
	(A)	Platinum-rhodi	um		(B)	Tungsten-moly	bdenu	m
	(C)	Chromel-alume	el		(D)	Iron-constanta	n	
54.	tran with	closed loop systemsfer function 1/2 transfer function ed loop system, the	2s. The on 1/T	e controller p '1s. When a s	proposed step cha	to be used in nge in set point	an inte	egral controller
	(A)	overdamped rea	sponse		(B)	underdamped i	respons	ве
	(C)	undamped resp	onse		(D)	unstable respon	nse	
55.		graph of an elec- ith respect to the					. The r	number of links
	(A)	B-N+1	(B)	B+N	(C)	N-B+1	(D)	N-2B-1
141				8	3			44.

- 56. Which of the systems having the following transfer function is stable?

 (A) $\frac{1}{s^2+2}$ (B) $\frac{1}{s^2-2s+3}$ (C) $\frac{1}{s^2+2s+2}$ (D) $\frac{1}{s^2}$
- 57. The transfer function for a first order process with time delay is
 - (A) $\frac{e^{T_d s}}{T s + 1}$

(B) $\frac{e^{-T_d s}}{T s + 1}$

(C) $\frac{1}{(Ts+1)(T_ds+1)}$

- (D) $\frac{T_d s}{T s + 1}$
- 58. Which of the following is not a mechanical pressure sensing element?
 - (A) Bellows
- (B) Diaphragm
- (C) Bourdon tube
- (D) U-tube
- 59. Which of the following is not a differential pressure flow meter?
 - (A) Rotameter

(B) Flow nozzle

(C) Orificemeter

(D) Venturimeter

- 60. Time constant is the
 - (A) time taken by the controlled variable to reach 63.2% of its full change
 - (B) same as transportation lag
 - (C) same as dead time
 - (D) time required by the measured variable to reach 63.2% of its ultimate change
- 61. E.m.f. generated by thermocouples is of the order of
 - (A) milli volts
- (B) micro volts
- (C) volts
- (D) kilo volts
- 62. Response of a linear control system for a change in set point is called
 - (A) frequency response

(B) transient response

(C) servo problem

- (D) regulator problem
- 63. Mcleoid gauge is used to measure the
 - (A) point velocity

(B) flow rate

(C) vacuum

- (D) pressure
- 64. When the damping co-efficient (ξ) is unity, the system is
 - (A) Over damped

(B) Critically damped

(C) Under damped

(D) Highly fluctuating

6 5.	Bacl	k- to- back HVDC is used to
	(A)	increase the transmission capability
	(B)	decrease line-losses
	(C)	provide stable interconnection
	(D)	reduce voltage drop
66.		sponse of a control system is to be free of offset and oscillation, the most suitable roller is
	(A)	proportional controller
	(B)	proportional-derivative(PD)controller
	(C)	proportional-integral (PI) controller
	(D)	proportional integral-derivative (PID) controller
67.	An e	embedded microcontroller means
	(A)	A microcontroller for the embedded systems
	(B)	Microcontroller with embedded processor
	(C)	A microcontroller with external memories storing the embedded software
	(D)	Single -chip microcontroller -based embedded system
68.	8257	is for DMA transfer
	(A)	from peripheral to RAM
	(B)	from RAM to peripheral
•	(C)	between peripheral and RAM
	(D)	between floppy disk controller and RAM
69 .	A D	AC output uses a low pass filter
	(A)	for line noise filtering
	(B)	to reduce the effect of sharp 1 to 0 transition and 0 to 1 transitions at the DAC input
	(C)	to drive low frequency output
٠.	(D)	to drive dc motor
70.		en-segment LED display glows only vertical and middle segments only. The layed character will be
	(A)	H (B) B (C) A (D) E
141		10

71.	An o	pptoisolator								
	(A)	insulates the port pins of MCU								
	(B)	insulates the inputs from the interfacing motors, power devices, coils and relays								
	(C)	insulates the input from an output								
	(D)	insulates the outputs from the power inputs								
72.	IEE!	E488 (GPIB) bus has								
	(A)	16 lines (B) 24 lines (C) 18 lines (D) 20 lines								
73.	Step	per motor moves one step angle when								
	(A)	current is transferred from one coil to the neighboring coil								
	(B)	insulates the input								
	(C)	current is switched on in the neighboring coil								
	(D)	when the current is given all the coils								
74.	Inte	rfacing circuit for a thermocouple is used for measuring temperatures								
	(A)	voltage developed is measured								
	(B)	current developed is measured								
	(C)	resistance is measured								
	(D)	resistance change is measured by MCU								
75 .	For	a robot wrist, is used.								
	(A)	DC motor (B) Stepper motor								
	(C)	Servomotor (D) Induction motor								
76.	For	industrial control								
	(A)	An advanced EPA (Event Processor Array) structure, PWM, WFG and multi-channel on-chip, ADC feature								
	(B)	Input capture and out compare units								
	(C)	Power IO								
	(D)	An advanced EPA (Event Processor Array) structure, PWM and multi-channel								
	J	on-chip ADC feature are must								
77.	A se	ervomotor control uses								
	(A)	timers (B) out compare features								
	(C)	real time features (D) PWM outputs								
		11 141								

78.		ulti-touch screen senses by tow tou rotate using	ich finge	r gestures such as zoom in, zoom out
	(A)	touch-screen controller		
	(B)	touch-screen controller, driver and	l library	
	(C)	touch-screen controller and driver		
	(D)	multi-touch library		
79.		embler is a tool to		
	(A)	develop and editing source file in files, and object file is executable a		y language and create list and object ing / location
	(B)	develop and editing compiled file which is executable after linking /		mbly language and create object file,
	(C)	assemble file in assembly langua after linking/ locating	ge and o	create object file, which is executable
	(D)	assemble macros	•	
80.		e step angle of the VR stepper mot lled as	or is ver	y small, then the modes of excitation
	(A)	Full step operation	(B)	2 phase on mode
	(C)	Half step operation	(D)	Micro stepping operation
81.	The	position sensor used in PMBLDC m	notor is	
	(A)	LVDT	(B)	Tachogenerator
	(C)	Strain Gauge	(D)	Position sensor
82 .		learning rate in Neural network is	used to	
•	(A)	calculate the final output		.*
	(B)	control the amount of weight adju-	stment	
	(C)	make convergence faster		
	(D)	control the degree of similarity		
83.		method of membership value as	signmen	ts based on common intelligence of
	(A)	Inference	(B)	Intuition
	(C)	Rank Ordering	(D)	Inductive reasoning
84.		process of fuzzy quantity into a pre-	cise qua	
	(A)	Fuzzification	(B)	Membership value assignments
	(C)	Defuzzification	(D)	Aggregation
85.	local	minimum?	prevent	s the algorithm to be trapped in a
·	(A)	Selection	(B)	Mutation
	(C)	Cross over	· (D)	Reproduction
141			12	

00.	V 04	-pit Mota consist	9 01					,	
	(A)	4 bytes	(B)	8 bytes	(C)	10 bytes	(D)	12 bytes	,
87.	How lines		ocatio	ons are availa	ble wh	en a memory de	evice l	nas 12 ac	ldress
	(A)	144	(B)	512	(C)	2048	(D)	4096	
88.	FIFC) is formed by an	arra	ngement of					
	(A)	Diodes			(B)	Transistors			
	(C)	MOS cells		•	(D)	Shift registers	-		
89.	What	t are the followin	g seq	uence of steps	taken i	in designing a fuz	zzy log	ric machi	ne?
	(A)	Fuzzification →	Rule	evaluation -	Defuz	zification			
	(B)	Rule evaluation	$\rightarrow \mathbf{F}$	uzzification -	Defuz	zification	•		
	(C)	Fuzzy Sets $\rightarrow \Gamma$	efuz:	zification $\rightarrow R$	ule eva	luation			
	(D)	Defuzzification	→ Ru	ıle evaluation	→ Fuz	zification			
90.	Duri	ng the analysis o	f The	venin's and No	orton's	theorems			
÷	(A)	Voltage sources	are s	hort -circuited	l and cu	irrent sources are	e open	– circuit	ed
	(B)	Voltage sources	are o	pen –circuited	and cu	rrent sources are	short	– circuit	ed
	(C) ·	Both voltage and	d cur	rent sources a	re short	circuited			
	(D)	Both voltage and	d cur	rent sources aı	re open	-circuited	-		
91.	atten	filter transmita nuates all frequ nency.		-		etween two-cut- t-off frequency		_	
	(A)	low pass	(B)	high pass	(C)	band pass	(D)	None	
92.	Whic	h of the following	g is tl	ne source of no	n-linea	rity?			
	(A)	Backlash in gear	rs		(B)	Saturation			
	(C)	Both (A) and (B))		(D)	Resistance			
			4	-4 2]	٠				
93.	The	given matrix is	-4 2	$\begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$	·		•		
	(A)	positive semi de	finite		(B)	negative semi de	efinite	;	
	(C)	positive definite			(D)	negative definit	е		

	beca	use of		
4	(A)	additional cooling surface		
	(B)	additional dissipation by radiation	only	
	(C)	additional dissipation by convection	only	
	(D)	additional dissipation by radiation	and cor	vection both
95.	Arm (lead	•	otor at	rated voltage and zero power factor
	(A)	magnetizing		
	(B)	cross - magnetizing		
٠	(C)	both magnetizing and cross - magn	etizing	
	(D)	demagnetizing		
96.	A 3-	phase slip-ring induction motor is i	fed for	n the rotor side with stator winding
	shor	t-circuited. The frequency of the curr	rents in	the short-circuited stator is
	(A)	slip frequency		
	(B)	supply frequency		
	(C)	frequency corresponding to rotor sp	eed	
	(D)	zero	•	
97.	Whi	ch of the following IC is the timer?		
	(A)	8255 (B) 8257	(C)	8259 (D) 8254
98.	A w	ide range instrument should have		
	(A)	square –law scale	(B)	linear scale
	(C)	logarithmic scale	(D)	exponential scale
99.		current coil of a wattmeter is connec nected across Y and B phases. The wa		the CT of R phase. The potential coil is
	(A)	active power in Y phase	(B)	reactive power in B phase
	(C)	active power in R phase	(D)	reactive power in R phase
100.	Den	norgan's first theorem shows the equi	ivalent	of
	(A)	OR gate and Exclusive OR gate	(B)	NOR gate and Bubbled gate
			(D)	NAND gate and NOT gate

Addition of tubes to the transformer tank improves heat dissipation capacity

94.