Punjab Technical University, Jalandhar

Maximum Marks: 90 Time: 90Mins.

Entrance Test for Enrollment in Ph.D Programme

Important Instructions

- Fill all the information in various columns, in Capital letters, with blue/black point pen for attempting the questions
- Use of calculators is not allowe(D)
- Make attempt by writing the answer in capital Letters in the box against each question number.
- All questions are compulsory. Each Question has only one right answer. No Negative marking for wrong answers.
- Questions attempted with two or more options/answers will not be evaluate(D)

Stream: Discipline Name Fathers Name Roll Number		Applied Sciences	
		Chemistry	
		Date: 13-07-2014	
Signa	ture of Candidate:		
Signa	ture of Invigilator		
1.	The O-O bond length varie	s in the following species as	
	(A) $O_2^{2-} < O_2^{-} < O_2 < O_2^{+}$	(B) $O_2^{2-}>O_2^{-}>O_2>O_2^+$	
	(C) $O_2^{2-} < O_2^{-} < O_2^{+} < O_2$	(D) $O_2^{2-}>O_2>O_2^{+}>O_2^{-}$	
2.	The hybridization of the xe	non atom in XeF ₄ is:	
	$(A) sp^2$	(B) sp^3	
	(C) sp ³ d	(D) $\mathrm{sp}^3\mathrm{d}^2$	
3. Which of the following molecule will have a permanent dipole moment?		lecule will have a permanent dipole moment?	
	(A) SiF ₄	(B) XeF ₄	
	(C) SF ₄	(D) BF_3	
4.	According to MO theory, for the atomic species C ₂		
	(A) Bond order is zero and it is paramagnetic		
	(B) Bond order is zero and	it is diamagnetic	

	(D) Bond order is two a	d it is diamagnetic		
5.	The number of antibone	ng electrons in NO and CO	according to MO theory are respectively	
	(A) 1,0	(B) 2,2		
	(C) 3,2	(D) 2,3		
6.	Iron-sulphur clusters in	ological systems are involv	ved in	
	(A) proton transfer	(B) atom transfer		
	(C) group transfer	(D) electron transfer		
7.	Which one of the follow	Which one of the following statements for hemoglobin is not correct?		
	(A) The binding with O ₂ is weaker in comparison with myoglobin.			
	(B) Iron is 5-coordinated			
	(C) Iron is co-planar with the porphyrin ring in the absence of oxygen			
	(D) The oxidation state of iron is +2.			
8. The metal present at the active site of the protein carboxypeptidase A is		boxypeptidase A is		
	(A) Zinc	(B) molybdenum		
	(C) magnesium	(D) cobalt		
9. Which of the following statement for borazene is not correct?		t correct?		
	(A) It has six B-H bond	(B) it has the	ree B=N bonds	
	(C) it has three N-H bor	ds (D) It has c	yelic structure	
10. Which of the following mixture of gases is used for breathing in deep of sea by d		breathing in deep of sea by divers?		
	(A) $O_2 + N_2$	(B) O_2 +He		
	(C) O_2 +Ne	(D) O_2+CO_2		
11. The type of force that holds the layers of carbon atoms in graphite together is:		ns in graphite together is:		
	(A) Ionic	(B) Hydrogen bond	ing	
	(C) Vander waal forces	(D) Covalent		
12.	Which one of the following species is isoelectronic with CO ₂ ?			
	$(A) N_3^-$	(B) CN_2^{2-}		
	(C) SCN	(D) CNO		

(C) Bond order is two and it is paramagnetic

13.	13. The increasing order of ease of liquefaction of noble gases is:		
	(A) He <ne<ar<kr<xe< td=""><td>2</td><td>(B) Xe<kr<ar<ne<he< td=""></kr<ar<ne<he<></td></ne<ar<kr<xe<>	2	(B) Xe <kr<ar<ne<he< td=""></kr<ar<ne<he<>
	(C) Ne <he<ar<kr<xe< td=""><td>;</td><td>(D) Ne<ar<he<kr<xe< td=""></ar<he<kr<xe<></td></he<ar<kr<xe<>	;	(D) Ne <ar<he<kr<xe< td=""></ar<he<kr<xe<>
14.	Which one of the follow	ving nob	ele gases does not form the clathrates?
	(A) He	(B) Ar	
	(C) Kr	(D) Xe	;
15. Among N_2 , N_3 , azobenzene and hydrazine, the shortest and longest N-N distance are found, respectively in			
	(A) N ₃ and hydrazine		(B) N ₂ and azobenzene
	(C) N ₃ and azobenzene	;	(D) N ₂ and hydrazine
16.	The hydrid orbitals used	d by bro	mine atom in BrF ₃ are
	$(A) sp^2$		(B) sp^3
	(C) sp ³ d		(D) $\mathrm{sp}^3\mathrm{d}^2$
17.	Wilkinson's catalyst is:		
	$(A) \left[Rh(CO)_2I_2\right]^{\text{-}}$		(B) $(Ph_3P)_3RhCl$
	(C) Co ₂ (CO) ₈		(D) $(Ph_3P)_2Rh(CO)Cl$
18.	Which one of the follow	ving doe	s not obey 18 electron rule?
	(A) $Cr(CO)_6$		(B) Fe(CO) ₅
	(C) V(CO) ₆		(D) $Mn_2(CO)_{10}$
19. The compound which has four metal-metal bonds is			
	(A) Fe ₂ (CO) ₉	(B) Co	$_{2}(\mathrm{CO})_{8}$
	$(C) \left[Re_2Cl_8\right]^{2-}$	(D) [R	$u_3(CO)]_{12}$
20. The catalyst used in the conversion of ethylene to acetaldehyde using Wacker process is			
	(A) HCo(CO) ₄		(B) $[PdCl_4]^{2-}$
	(C) V_2O_5		(D) TiCl ₄ in the presence of Al(C ₂ H ₅) ₃
21. Hemocyanin contains			
	(A) A dinuclear copper core that binds dioxygen in the cuprous state		
	(B) A dinuclear copper core that binds dioxygen in the cupric state		
	(C) A mononuclear copper core that binds dioxygen in the cuprous state		

	(D) A mononuclear copper core that binds dioxygen in the cupric state		
22. In oxy-hemoglobin, the iron centre is best described as			
	(A) high-spin Fe(III)	(B) high-spin Fe(II)	
	(C) low-spin Fe(III)	(D) low-spin Fe(II)	
23	. The ligand system in vitamin B	₁₂ is:	
	(A) Porphyrin	(B) Corrin	
	(C) Phthalocyanine	(D) crown ether	
24	. According to crystal field theory	y, Ni ²⁺ can have two unpaired electrons in	
	(A) Octahedral geometry only	(B) Square planar geometry only	
	(C) Tetrahedral geometry only	(D) Both octahedral and tetrahedral geometry	
25. Which of the following spectroscopic techniques will be useful to distinguish between M-SCN and M-NCS?			
	(A) NMR	(B) IR	
	(C) EPR	(D) Mass	
26	. Which of the following compou	unds show a charge-transfer band?	
	(A) Lanthanum nitrate	(B) Ceric ammonium nitrate	
	(C) Manganese(II)acetate	(D) Copper(II)sulphate pentahydrate	
27	. In the molecule H ₂ O, NH ₃ and O	CH ₄ :	
	(A) The bond angles are same	(B) The bond distances are same	
	(C) The hybridizations are same	e (D) The shapes are same	
28	28. Which one of the following exhibit rotational spectra?		
	$(A) H_2$	$(B) N_2$	
	(C) CO	(D) CO ₂	
29. The correct order of stability of difluorides is:			
	(A) GeF ₂ >SiF ₂ >CF ₂	(B) $CF_2 > SiF_2 > GeF_2$	
	(C) SiF ₂ >GeF ₂ >CF ₂	(D) $CF_2 > GeF_2 > SiF_2$	
30. Cis and trans complexes of the type [Pt $A_2 X_2$] are distinguished by			
	(A) Chromyl chloride test	(B) Carbylamine test	
	(C) Kurnakov test	(D) Ring test	

31. How much energy is cre	eated from the conversion of 1.0×10^{-4} kg of matter?	
(A) $3.0 \times 10^4 \mathrm{J}$	(B) $3.0 \times 10^7 \mathrm{J}$	
(C) $9.0 \times 10^{12} \mathrm{J}$	(D) $9.0 \times 10^{15} \mathrm{J}$	
32. In a certain reaction ΔH forward reaction?	= -136 kJ and Ea reverse = 236 kJ. Which of the following is true of its	
(A) The reaction is exor	hermic and $Ea = -100 \text{ kJ}$.	
(B) The reaction is exothermic and Ea = 100 kJ.(C) The reaction is endothermic and Ea = 372 kJ.		
	\rightarrow H ₂ (g) +I ₂ (g), K _p = 0.0198 at 721 K. In a particular experiment, the and [I ₂] at equilibrium are 0.710 and 0.888 atm, respectively. The partial	
(A) 7.87 atm	(B) 1.98 atm	
(C) 5.64 atm	(D) 0.125 atm	
34. $Ag^+ + e^- \rightarrow Ag(s)$	$E^0 = +0.80 \text{ V}$	
$Cr^{3+} + 3e^{-} \rightarrow Cr(s)$	$E^0 = -0.74 \text{ V}$	
potential for the reaction below	potentials for chromium and silver shown above, what is the cell $- Cr(s) \rightarrow 3 Ag(s) + Cr^{3+}$	
(A) 0.06 V	(B) 1.54 V	
(C) 1.66 V	(D) 3.14 V	
35. Which one of the following	will change the value of an equilibrium constant?	
	nces that do not react with any of the species involved in the equilibrium oncentrations of reactants	
36. Calculate the vibrational parharmonic vibrational wavenumb	tition function for the sodium dimer, Na ₂ , molecule at 298 K. The per is 159 cm ⁻¹ .	
(A) 1.107 (C) 2.341	(B) 1.542 (C) 1.866	
37. What is the degeneracy of the	the energy level with $n=6$ in a hydrogenic atom or ion?	
(A) 25	(B)16	
(C)36	(D)9	

38. How many nodes does a 4d orbital possess?			
(A) 3, of which 1 is an angular node and 2 are radial nodes			
(B) 3, of which 2 are angular nodes and 1 a radial node			
(C) 3, of which all are radial nodes			
(D) 3, of which all are angular nodes			
39. What is the symmetry of the antibonding molecular orbital formed by a linear combination of the p_x or p_y atomic orbitals in a homonuclear diatomic molecule?			
$(B)\sigma_u$			
(D) $\pi_{\rm g}$			
ermine the bond order for the O_2^+ ion.			
(B)1½			
(D) 2			
41. Calculate the quantum-mechanical zero-point energy of an electron confined within a one-dimensional box of length 1.0 nm.			
(B)0 J			
(D) 5.4×10^{-19} J			
42. What terms can arise from the configuration $2p^{1}3p^{1}$?			
(B) ${}^{3}D, {}^{3}P, {}^{3}S$			
(D) ${}^{1}D, {}^{3}P, {}^{3}S$			
43. The root-mean-square distance between the ends of a polymer chain was found to be 6.2 nm. Estimate the number of monomers in the chain, given that the length of each monomer unit is 2.1 Å. (A)870 (B)30			
(D) 17			
(C)6 (D) 17 44. A large activation energy implies which of the following about a reaction?			
(A)It is spontaneous.			
(B) It is highly endothermi(C)			
(C)It is at equilibrium.			
(D) It has a highly temperature-dependent rate constant.			

	What is the degeneracy of the roecule?	tational energy level with $J = 4$ for a heteronuclear diatomic	
	(A)2	(B)9	
	(C)6	(D)5	
46. V	Which of the following statemen	ats are false?	
	(A) the greater the energy tr	ansition, the greater the frequency	
	(B) the greater the energy transition, the shorter the wavelength		
	(C) the higher the frequency, the longer the wavelength		
	(D) the smaller the energy tr	ransition, the longer the wavelength	
47. (Calculate the equilibrium consta 2 NO(g) + C	nt at 25°C for the reaction $O_2(g) \square 2 NO_2(g)$	
į	given that $\Delta_{\Gamma}G^{\circ} = -69.8 \text{ kJ mol}$	-1.	
	(A) 1.7×10^{12}	(B) 28.2	
	(C) 1.03	(D) 5.91×10^{-13}	
48. T	The function $F(x)=cSin(ax)$ is an	eigen function of d2/dx2. What is the eigen value	
	(A) ca	(B) ca^2	
	(C) -a ²	(D)1	
49. V	Which of the following condition $(A)\Delta S_{\text{sur}} > 0$	ns is necessary for a reaction to be spontaneous? (B) $\Delta S_{\text{sys}} > 0$	
	$(C)\Delta S_{\rm sur} + \Delta S_{\rm sys} > 0$	$(D)\Delta S_{\text{sur}} + \Delta S_{\text{sys}} < 0$	
50.	Schottky-defect in ceramic mate	erial is	
	(A) Interstitial impurity		
	(B) Vacancy- interstitial pair of cations		
	(C) Pair of nearby cation and anion vacancies		
	(D) Substitutional impurity		
51. V	Which one of the following is no	ot a strong bond?	
	(A) van der Waals bond		
	(B) Covalent bond		
	(C) Metallic bond		
	(D) Ionic bond		

58. A perfect gas expands reversibly at a constant temperature of 298 K so that its volume doubles. What is the change in the molar internal energy of the gas?

(A)+2.27kJ/mol

(B) 0kJ/mol

(C) +1.72kJ/mol

(D) -2.27kJ/mol

59. The main difference between a suspension and a colloid is that:

- (A) In suspensions the particles eventually settle to the bottom.
- (B) In colloids the particles eventually settle to the bottom.
- (C) In colloids, the solute is permanently dissolved in the solvent.
- (D)In suspensions, the solute is permanently dissolved in the solvent.

60. Consider the following:
$$N_2O_{4(g)} \square 2NO_{2(g)}$$

Colourless Brown

N₂O₄ is placed in a flask at a constant temperature. Which of the following is true as the system approaches equilibrium?

- (A)The colour gets darker as $[NO_2]$ increases.
- (B) The colour gets lighter as [NO₂] decreases.
- (C)The colour gets darker as $[N_2O_4]$ increases.
- (D)The colour gets lighter as $[N_2O_4]$ decreases.

61. Which of the following structure is antiaromatic?

- (A) Pyridinium cation
- (B) Anthracene
- (C) Cyclooctatetraene
- (D) Cyclopentadiene in presence of base

62. The following flow chart connects few reactions

To which arrow(s) does Markovnikov and Zaitsev rule closely relate, respectively

- (A) 6.4
- (B) 6,3

- (C) 5,3
- (D) 5,4
- 63. The retrosynthetic analysis of following compound requires FGI and disconnection. Identify the disconnection

$$RO \sim NH_2$$

- (A) 1,3-diX
- (B) 1,2-diX
- (C) 1,1-diX
- (D) 1,1-diX and 1,3-diX
- 64. What is the product of following reaction?

65. Identify the reaction/mechanism appropriate for each step in the following syntheses

- (A) (i) = Hell Vohlard Zelinski reaction; (ii) = E1 mechanism
- (B) (i) = Haloform reaction; (ii) = E2 mechanism
- (C) (i) = Hell Vohlard Zelinski reaction; (ii) = E2 mechanism
- (D) (i) = Haloform reaction; (ii) = E1 mechanism
- 66. The following amino acid is

$$H_2N$$
 NH_3^+ O

- (A) Asparagine
- (B) Glutamine
- (C) Lysine
- (D) Arginine

67. Supramolecular chemistry

- (A) Involves non-covalent interactions
- (B) Chemistry beyond the molecule
- (C) Both (A) and (B)
- (D) None of the above
- 68. Predict the IUPAC nomenclature of the following compound

- (A) 2-Methyl-1-formylpenta-4-one
- (B) 2-Methyl-4-oxopentanal
- (C) 4-Methyl-2-oxopentanal
- (D) 4-Methyl-5-formylpenta-2-one
- 69. A well-known sulfoxide sulfenate rearrangement for the synthesis of E-allylic alcohol, is an example of
 - (A) [3,3]-Sigmatropic rearrangement
 - (B) [1,2]-Sigmatropic rearrangement
 - (C) [3,2]-Sigmatropic rearrangement
 - (D) [2,3]-Sigmatropic rearrangement
- 70. A catalyst with composition Pd-CaCO₃-Pb(OOCCH₃)₂ is known as
 - (A) Jones Catalyst
 - (B) Lindlar Catalyst
 - (C) Wilkinson Catalyst
 - (D) Fremy's Catalyst
- 71. Rank the compounds in the following group in order of decreasing acidity

NO₂CH₂COOH (I), ClCH₂COOH (II), CNCH₂COOH (III) CH₃COOH (IV)

- (A) I > II > III > IV
- (B) III > I > IV > II
- (C) I > III > II > IV
- (D) III > II > IV

72. The following reagent is used in

- (A) Horner-Wadsworth-Emmons reaction
- (B) Horner-Wittig reaction
- (C) Wittig reaction
- (D) Peterson reaction

73. Nucleophilic substitution at an aliphatic trigonal carbon involve

- (A) Tetrahedral Mechanism
- (B) SN₂ Mechanism
- (C) SET mechanism
- (D) Elimination-addition Mechanism

74. Determine the configuration of following alkene as appropriate

- (A) Z Configuration
- (B) S Configuration
- (C) R Configuration
- (D) E Configuration

75. Out of the following which statement is not correct?

- (A) Terpene is a diverse class of natural products.
- (B) Sesquiterpenes contain four isoprene units.
- (C) Isoprene is the most common volatile organic compoun(D)
- (D) Steroids are metabolic derivatives of Terpenes.

76. Kevlar fibers which are strong and stiff, belong to which class of condensation polymer

- (A) Polycarbonates
- (B) Polyesters
- (C) Polyamides
- (D) None of the above

77. Rank the compounds in the following group in order of decreasing basicity

Pyrrole, Imidazole, Pyridine and Pyrazole

(A) Imidazole > Pyrazole > Pyridine > Pyrrole

- (B) Pyrrole > Pyrazole > Pyridine > Imidazole
- (C) Pyridine > Pyrrole > Pyrazole > Imidazole
- (D) Imidazole > Pyrrole > Pyrazole > Pyridine
- 78. What is the orientation of the OH groups at C-2 and C-3 in the β-pyranose form of D-Ribose?
 - (A) Both are axial
 - (B) Both are equatorial
 - (C) C-2 is axial; C-3 is equatorial
 - (D) C-2 is equatorial; C-3 is axial
- 79. Out of the following group of compounds, which statement is true?

$$\begin{array}{c} H_3C \\ C=C=C \\ \end{array} \begin{array}{c} H \\ CH_3 \end{array}$$

- (A) I & III are Achiral; II is Chiral
- (B) I & II are Achiral; III is Chiral
- (C) II & III are Achiral; I is Chiral
- (D) All are Chiral
- 80. One of the following is often used to prepare enamine from aldehyde and ketones. Identify the enamine-forming compound

- 81. Ozonolysis of 'X' alkene produces molecule of acetone and 2,2-Dimethylpropanal. What would be the structure of 'X'?
 - (A) 2,4,4-Trimethyl-2-pentene
 - (B) 2,3,4-Trimethyl-2-pentene
 - (C) 3,4-Dimethyl-2-pentene
 - (D) 2,4-Dimethyl-2-pentene
- 82. Most of the time the polarity of the organic compounds in the synthetic organic laboratory are talked in term of R_f value. What does R_f stands for
 - (A) Ratio factor
 - (B) Retention factor
 - (C) Resonance factor
 - (D) Reflectance factor

83. Norrish Type II reaction of aldehyde and ketone involve

- (A) Extrusion of CO group
- (B) Decomposition of ketone to give acyl radical
- (C) Abstraction of hydrogen at γ-position
- (D) Abstraction of hydrogen at β-position

84. "If two states are similar in energy, they are similar in structure". This rationale is known as

- (A) Markus Theory
- (B) Woodward-Hoffmann rule
- (C) Hammonds Postulate
- (D) Gibbs energy relation

85. α-Amino ketones can be prepared by treatment of ketoxime tosylates and base via

- (A) Beckmann rearrangement
- (B) Schmidt Reaction
- (C) Lossen Rearrangement
- (D) Neber rearrangement

86. The following reaction equilibrium for formation of anion represent typical example of

- (A) d¹ Synthon
- (B) d² Synthon
- (C) a¹ Synthon
- (D) a² Synthon

87. How many signals would you expect to find in the ¹H NMR spectrum of vinyl bromide

- (A) 1
- (B) 2
- (C) 3
- (D)4

88. Bayer-villiger oxidation of ketone involve the use of

- (A) Caro's acid
- (B) Peracetic acid
- (C) m-CPBA
- (D) All of the above

89. Following reaction is an example of

- (A) Diels-Alder reaction
- (B) Cheleotropic reaction
- (C) Ene reaction
- (D) None of the above

90. The following reaction is an example of?

- (A) Suzuki Reaction
- (B) Negishi reaction
- (C) Stille reaction
- (D) Heck Reaction