Entrance Test for Enrollment in Ph.D. Programme Important Instructions > Fill all the information in various columns, in capital letters, with blue/black ball point pen. > Use of calculators is not allowed. > All questions are compulsory. No negative marking for wrong answers. > Each question has only one right answer. > Questions attempted with two or more options/answers will not be evaluated.						
Stream (Engg./Arch./Pharm./Mgmt./App.Sci./Life Sci.)			APPLIED SCIENCES			
Discipline / Branch			MATHEMATICS			
Name						
Father's	Name					
Roll No.				Date: 19-11-2011		
ignature	e of Candi	date				
ignature	e of Invigi	lator				
Q.2.	$\begin{array}{cccc} (A) & (C) & (C$	digit in 3^{400} is;	Q.5.	then what is the value of $(a - b)(a - c)(D) \begin{bmatrix} \frac{n(n+1)}{6} \end{bmatrix}^{-1}$. The number of real solutions of the equation $x^2 - 3 x + 2 = 0$ are (A) 0 (B) 2 (C) 3 (D) 4		
Q.3. Q.4.	(sin2θ + (A) s (B) c (C) - (D) - The valu +	is the imaginary p $i\cos 2\theta$ ⁴ ($\sin \theta - i\cos \theta$) $\sin 11\theta$ $\cos 11\theta$ $-\sin 11\theta$ $-\cos 11\theta$ ue of 1 + (1 + 2) + (1 - 4) - + (1 + 2 + 3 + - 4)) ⁻³ ? Q.o. + 2+ 3)	 If the set of intergers with the operation defined by m*n = m+n-1 forms a group. What is the inverse of m? (A) -m (B) 2 m (C) 2 - m (D) 1 - m 		
	(B) -	$\frac{n(n+1)(2n+1)}{6}$ $\frac{n(n+1)(n+2)}{6}$ $\frac{n(n+1)(2n-1)}{6}$	Q.7.	 If I is an identity transformation of finite dimensional vector space v, then (A) Nullity > dim v (B) Nullity < dim v (C) Nullity = dim v (D) Nullity ≥ dim v 		

(D) 1600

Q.13. If $\mathbb{R}^2 \rightarrow \mathbb{R}$ is a linear map for which T (1,1) = 3 and T(0,1) = -2, then T(a,b) is equal to

- (A) 5a 2b
- (B) 2a 5b
- (C) 2a + 5b
- (D) 5a + 2b

Q.14. If
$$z = x + iy$$
 and $\left|\frac{1 - iz}{z - i}\right| = 1$, then z lies

- on
- (A) x axis
- (B) y axis
- (C) a circle with radius unity
- (D) on line y = x

Q.15. The analytic function w(z) = u + iv, where v = $\frac{x + y}{x^2 + y^2}$, then w(z) is (A) $\frac{-1+i}{z} + const.$ (B) $\frac{1+i}{z} + const.$ (C) $\frac{1-i}{z} + const.$ (D) $\frac{-1-i}{z} + const.$

Q.16. In the Laurent series expansion of $f(z) = \frac{1}{z-1} - \frac{1}{z-2}, \text{ valid in the}$ region |z| > 2, the coefficient of $\frac{1}{z^2}$ is (A) 0 (B) -1 (C) 1 (D) 2

Q.17. The value of integral $\oint_{|z|=2} \frac{\cos z}{z^3} dz$ is

- (A) πi
- (B) $2\pi i$
- (C) $-\pi i$
 - (D) $-2\pi i$

Q.8. The value of the determinant

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$
, is
a³ + b³ + c³
3abc
a³ + b³ + c³ - 3abc

(C)
$$a^3 + b^3 + c^3 - 3abc$$

(D) $a^3 + b^3 + c^3 - 3abc$

(D) $a^3 + b^3 + c^3 + 3abc$

(A) (B)

- Q.9. The equations 2x 3y + 6z = 4, 5x + 7y - 14z = 1, 3x + 2y - 4z = 0have
 - (A) Unique solution
 - (B) Exactly two solutions
 - (C) Infinitely many solutions
 - (D) No solution

Q.10. If
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
, then A (adj. A) is
(A) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$
(B) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(D) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Q.11. The matrix $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$ has eigen values (A) 4,6 (B) 5,5 (C) 2,8 (D) 1,9 Q.12. Let a 3x3 matrix A have determinant

Q.12. Let a 3x3 matrix A have determinant 5, if $B = 4A^2$, then the determinant of B is equal to (A) 20

- (B) 100
- (C) 320

- Q.18. If P,Q,A,B are (1,2,5), (-2,1,3), (4,4,2), (2,1,-4) respectively, then the projection of PQ on AB is 3
 - (A)
 - 4 **(B)**
 - 3.5 (C)
 - (D) 4.5
- Q.19. What is the equation of the cone with vertex at origin and passing through the circle $x^2 + y^2 = 4$, z = 2?(A) $x^{2} + y^{2} + z^{2} = 0$ (B) $x^{2} + y^{2} - z^{2} = 0$ (C) $x^{2} - y^{2} + z^{2} = 0$ (D) $-x^{2} + y^{2} + z^{2} = 0$
- Q.20. Under which one of the following conditions does the equation $ax^{2} + by^{2} + cx + cy = 0, c \neq 0,$ represents a pair of straight lines?
 - a + b + c = 0(A)
 - a + c = 0(B)
 - (C) $\mathbf{b} + \mathbf{c} = \mathbf{0}$
 - a + b = 0(D)
- 0.21. The directional derivative of ϕ (x,y,z) = 5x²y - 5y²z + 2.5 xz² at the point P (1,1,1) in the direction of the line x - 1 = 2 - y = 2z is
 - (A) 35/3
 - **(B)** 35
 - (C) 10
 - (D) 50/3
- Q.22. The value of $\oint [(2x y^3)dx + xydy]$,

where c is the region enclosed by |z| = 1 and |z| = 3 is

- (A) 60π
- **(B)** 60
- (C) 0
- (D) 8π

Q.23. $\vec{A} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ and

 $\vec{B} = 5\hat{i} + 2\hat{j} + 4\hat{k}$, then the angle between \vec{A} and \vec{B} is

- (A) $\pi/4$
- **(B)** $\pi/3$
- (C) $\pi/2$
- (D) π

- Q.24. The value of $\int grad(x+y+z) \cdot d\vec{R}$
 - from (0,1,-1) to (1,2,0) is
 - (A) 0
 - 3 **(B)** (C)
 - 1 (D) 1

Q.25. If a force $\vec{F} = 2x^2 y\hat{i} + 3xy\hat{j}$ displaces a particle in the xy-plane from (0,0)to (1,4) along the curve $y = 4x^2$, then the work done is equal to

- (A) 104
- 104/5**(B)**
- (C) 32
- 32/5 (D)
- Q.26. A particle executing simple harmonic motion represented by $x = a \sin \omega t$, takes t_1 time in going from x = 0 to x = 0.5a and the time taken from x = 0.5a to x = a it t_2 . The ratio of t_1 : t_2 would be
 - (A) 2:1
 - **(B)** 1:1
 - (C) 1:2
 - (D) 1:3
- Q.27. The resultant of two forces acting at angle of 150° is 10N and is perpendicular to one of the forces. The other force is
 - (A) 20N
 - $20\sqrt{3}N$ (B)
 - (C) $10\sqrt{3}N$
 - $\frac{20}{\sqrt{3}}N$ (D)
- Q.28. A particle starting from rest and moving with constant acceleration covers a distance x in first 2 seconds and distance y in next 2 seconds, then
 - (A) $\mathbf{v} = \mathbf{x}$
 - (B) y = 2x
 - (C) y = 3x
 - (D) y = 4x

- Q.29. If a train 110 m long passes a telegraph pole in 3 seconds, then the time taken (in seconds) by it to cross a railway platform 165 m long is 3
 - (A)
 - 4 **(B)** 5
 - (C) 7.5 (D)
- Q.30. Let f(2) = 4 and f'(2) = 1, then limit of $\frac{xf(2)-2f(x)}{x-2}$ as x approaches 2
 - is given by
 - (A) 4
 - -2(B)
 - (C) 2
 - (D) 4
- Q.31. The radius of curvature at the origin for the curve $x^3 + y^3 - 2x^2 + 6y = 0$ is (A) $\frac{1}{2}$
 - **(B)**
 - 1 $^{3}/_{2}$ (C)
 - 2 (D)
- Q.32. If $xy-\log_e y = 1$, satisfies the equation x $(yy_2 + y_1^2) - y_2 + \lambda yy_1 = 0$, then λ is equal to (A) - 3 (B) 1 3 (C) (D) - 1
- Q.33. If $f(x) = \frac{3x+7}{r+2}$, then the value of
 - $\frac{d^4 f(x)}{dx^4} \text{ at } x = 0 \text{ is}$ (A) 3 (B) 3.5 (C) 0.25 (D) 0.75
- Q.34. If the point (-1, 2) be a point of inflexion of the function $f(x) = ax^3 + bx^2$, then the value of a and b are:
 - a = 1, b = 3(A)
 - (B) a = -1, b = 3
 - a = -1, b = -3(C)
 - (D) $a \in R, b \in R$

- Q.35. The length of the arc $x = t^3$, $y = 2t^2$ from (0,0) to (1,2) is
 - $\frac{1}{3}$ (A)
 - **(B)** 1
 - ¹ ⁶¹/₂₇ (C)
 - ²⁷/₆₁ (D)
- Q.36. The number of real asymptotes of $x^{3} + y^{3} + 3xy = 0$ are
 - (A) 0
 - **(B)** 1
 - (C) 2
 - (D) 3
- Q.37. Let f(x) and g(x) be differentiable for $0 \le x \le 2$, such that f(0) = 4, f(2)=8, g(0) = 0 and f'(x) = g'(x) for all $0 \le x \le 2$, then the value of g(2) must be
 - (A) -4
 - (B) 2
 - (C) 2
 - (D) 4
- Q.38. If $f'(x) = \frac{x^2}{2} kx + 1$ and f(0) = 0and f(3) = 15, then the value of k is equal to
 - (A) 5/3
 - 3/5 (B)
 - (C) -5/3
 - -3/5
 - (D)
- Q.39. For the curve $y^2 = (x 2) (x 5)^2$, the point (5,0) is a
 - (A) node
 - **(B)** single cusp
 - double cusp (C)
 - conjugate point. (D)
- Q.40. If f(x) is an even function of x in $[-\pi, \pi]$, about which axis, will the graph of f(x) is symmetric
 - (A) x-axis
 - **(B)** y-axis
 - (C) about origin
 - (D) Both axis

PUNJAB TECHNICAL UNIVERSITY, JALANDHAR

Q.41.	If $u = \log_e \left(\frac{x^4 + y^4}{x + y}\right)$, show that	Q.47.	$\int_0^{\pi/2} \frac{\cos 2x}{\cos x + \sin x} dx$ is equal to
	$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to (A) 1		$\begin{array}{rrrr} (A) & -1 \\ (B) & 0 \\ (C) & 1 \\ (D) & 2 \end{array}$
	(B) 2 (C) 3 (D) 5	Q.48.	$\int_0^{\pi/2} \sin^4 x \cos^2 x dx$ is equal to (A) 1/6
Q.42.	value of $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z}$ is equal to		(B) $1/32$ (C) $\pi/32$ (D) $\pi/4$
	(A) -1 (B) 0 (C) $x + y + z$ (D) xyz	Q.49.	$\int_{e}^{1} \int_{e^{x}}^{e} \frac{dydx}{\log_{e} y}$ is equal to (A) e
Q.43.	The maximum value of $\frac{\log_e x}{x}$ is (A) 1		(A) e (B) $e-1$ (C) $e+1$ (D) $2e$
	(A) 1 (B) e (C) $2/e$ (D) $1/e$	Q.50.	The value of $\oint_c z^4 e^{1/z} dz$, where c is $ z = 1$, is equal to
Q.44.	$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{k^2 + n^2}$ is equal to		(A) πi (B) $\pi i/12$ (C) $\pi i/60$
	(A) 0 (B) $\frac{1}{2} \log_{e} 2$ (C) $\tan^{-1} 2$ (D) ∞	Q.51.	(D) $-\pi i/60$ The particular integral of
Q.45.			$\frac{d^2 y}{dx^2} + y = xe^{2x} \text{ is}$ (A) $\frac{e^x}{25}(5x-4)$
	x-axis is (A) 1 (B) 2/3		(B) $\frac{e^{2x}}{25}(4x-5)$
	(C) $\frac{4}{3}$ (D) $\frac{8}{3}$		(C) $\frac{e^x}{25}(4x-5)$ (D) $\frac{e^{2x}}{25}(5x-4)$
Q.46.	The value of the integral $\int_0^\infty \frac{x^2}{2^x} dx$ is (A) $2 \log_e 2$ (B) 2		
	(B) 2 (C) $(\log_e 2)^{-2}$ (D) $2(\log_e 2)^{-3}$		

Q.52. The necessary and sufficient for condition equation M (x,y) dx + N (x,y)dy = 0 to be exact is

(A)
$$\frac{\partial N}{\partial y} = \frac{\partial M}{\partial x}$$

(B) $\frac{\partial N}{\partial y} = -\frac{\partial M}{\partial x}$
(C) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
(D) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$

- Q.53. An integrating factor of the differential equation $\sinh y \, dx + \cosh y \, dy = 0$ is (A) ex **(B)** Х (C) У
 - (D) xy
- Q.54. For $\frac{d^2y}{dx^2} + 4y = \tan 2x$, solving by variation of parameters. The value of Wronskian is 1
 - (A)
 - **(B)**

2

- 3 (C) 4
- (D)
- Q.55. Elimination of a and b from z=ae^{bt}sinbx gives the partial differential equation

(A)
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial t^2} = 0$$

(B) $\frac{\partial^2 z}{\partial t^2} - \frac{\partial^2 z}{\partial t^2} = 0$

(B)
$$\frac{\partial x^2}{\partial x^2} - \frac{\partial t^2}{\partial t^2} =$$

(C)
$$\frac{\partial z}{\partial x} + z = 0$$

(D)
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial t} = 0$$

Q.56. The partial differential equation
$$y^{2} \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + 7 = 0$$

- is
- Parabolic (A)
- Hyperbolic **(B)**
- (C) Elliptic
- (D) Poission's
- Q.57. Inverse laplace transform of $\frac{1}{s(s^2+1)}$ is (A) $1 + \sin t$
 - (B) 1 – sin t
 - (C) $1 + \cos t$
 - (D) $1 - \cos t$
- Q.58. Laplace transform of unit step function u(t - a), where a is always positive is
 - (A) 1
 - e^{-as} **(B)**
 - e^{-as}/s (C)
 - e^{as}/s (D)
- Q.59. $\int te^{-3t} \sin t \, dt$, is
 - (A) 1/50
 - 1/25**(B)**
 - 3/50 (C)
 - (D) 2/25
- Q.60. $J_{1/2}(x)$ is equal to

(A)
$$\sqrt{\frac{2x}{\pi}} \sin x$$

(B) $\sqrt{\frac{2}{\pi x}} \sin x$
(C) $\sqrt{\frac{2x}{\pi}} \cos x$
(D) $\sqrt{\frac{2}{\pi x}} \cos x$

- Q.61. The polynomial $2x^2 + x + 3$ in terms of Legendre polynomials is
 - (A) $1/3[4P_2(x)-3P_1(x) + 11P_0(x)]$
 - (B) $1/3[4P_2(x)+3P_1(x)-11P_0(x)]$
 - (C) $1/3[4P_2(x)+3P_1(x)+11P_0(x)]$
 - (D) $1/3[4P_2(x)-3P_1(x)-11P_0(x)]$
- Q.62. If $J_n(x)$ is a Bessel function of first

kind, then $\int_{0}^{\pi} [J_{-2}(x) - J_{2}(x)] dx$, is equal to (A) 2 (B) -2

- (C) 0
- (D) 1
- Q.63. The value of $\int_{-1}^{1} P_2^2(x) dx$, is equal to (A) 0 (B) 1
 - (B) 1(C) 2/3
 - (C) 2/5(D) 2/5
- Q.64. Let x be a random variable, denote the number of points rolled with an unbiased die. The expected value of $f(x) = 2x^2 + 1$ is (A) 94
 - (B) 94/2
 - (C) 94/3
 - (D) 94/4
- Q.65. If P (A \cap B) = 0, then P (A / A \cup B) is equal to

(A)
$$\frac{P(A)}{P(B)}$$

(B)
$$\frac{P(A)}{P(B) + P(A \cup B)}$$

(C)
$$\frac{P(A)}{P(A) + P(B)}$$

(D)
$$\frac{P(B)}{P(A) + P(B)}$$

- Q.66. The median of the numbers 11,10,12,13,9,10 is
 - (A) 10
 - (B) 11
 - (C) 10.5
 - (D) 11.5

- Q.67. In a Poisson distribution if 2 P (x = 1) = P (x = 2), then the variance is
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 4
- Q.68. If the correlation coefficient between two variables is zero, then the two regression lines are
 - (A) Parallel
 - (B) Perpendicular
 - (C) Coincident
 - (D) Inclined at 45° to each other
- Q.69. The order of convergence in Newton-Raphson method is
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3

Q.70. Simpson's '3/8' rule of integration for evaluation of $\int_{a}^{b} f(x)dx$ requires the interval (a,b) to be divided into multiples of

- (A) 2
- (B) 3
- (C) 4
- (D) 6

Q.71. For $\frac{dy}{dx} = x + y$, y (0) = 0 using Euler's method and step size of 0.2, the value of y (0.6) is

- (A) 0.04
- (B) 0.28
- (C) 0.128
- (D) 0.0128
- Q.72. If the mean and variance of a Binomial distribution with parameters (n,p) are 40 and 30 respectively then parameters are
 - (A) (40,0.75)
 - (B) (30,0.25)
 - (C) (160, 0.25)
 - (D) (120,0.50)

Q.73. If x be a normal variate with mean 50 and variance 4, then the modal ordinate is equal to

(A)
$$\frac{1}{50\sqrt{2\pi}}$$

(B)
$$\frac{1}{4\sqrt{2\pi}}$$

(C)
$$\frac{1}{2\sqrt{2\pi}}$$

(D)
$$\frac{1}{\sqrt{2\pi}}$$

- Q.74. In testing the significance of the difference of two sample means in case of small samples of size n_1 and n_2 , the degree of freedom is calculated by
 - $(A) \qquad n_1+n_2-2 \\$
 - (B) $n_1 + n_2$
 - (C) $n_1 + n_2 1$
 - (D) $n_1 n_2 + 2$
- Q.75. Given $x_1+x_2+x_3=4$, $2x_1+x_2+5x_3=5$, the maximum number of possible basic solution is equal to
 - (A) 3
 - (B) 4
 - (C) 2
 - (D) 6
- Q.76. In a balanced transportation problem with m origins and n destinations, the solution is non-degenerate, if the number of occupied cells is equal to
 - (A) m+n
 - (B) m + n + 1
 - (C) m + n 1
 - (D) m n + 1
- Q.77. If u+3x = 5, 2y v = 7 and $r_{xy} = 0.12$ then r_{uv} is equal to
 - (A) 0.12
 - (B) -0.12
 - (C) 0
 - (D) Can't be obtained

- Q.78. Consider two regression lines 3x + 2y = 26 and 6x + y = 31, then the correlation coefficient between two variables and the estimate of y for x = 0 are
 - (A) 0.5,13
 - (B) 0.5,31
 - (C) -0.5,13
 - (D) 0.5,31
- Q.79. The number 30.05678 rounded off to four significant figures is
 - (A) 30.05
 - (B) 30.0568
 - (C) 30.06
 - (D) 30.05670
- Q.80. Let $u=5xy^2/z^3$, $\Delta x = \Delta y = \Delta z = 0.001$ and x = y = z = 1. Then the relative maximum error is equal to
 - (A) 0.006
 - (B) 0
 - (C) 0.06
 - (D) 0.03
- Q.81. Mean and standard deviation of an examination in which marks 70 and 88 correspond to standard scores of -0.6 and 1.4 respectively are
 - (A) 79, 9
 - (B) 79, 3
 - (C) 75.4, 3
 - (D) 75.4, 9
- Q.82. The number of all possible matrices of order 2 x 2 with each element 0 or 1 is
 - (A) 2
 - (B) 8
 - (C) 16
 - (D) 32
- Q.83. What are the values of a and b respectively, if limit of

 $\frac{\sin ax - x - \log_e(\cos x)}{x \sin bx}$ as x approaches 0 is ¹/₂.

- (A) a = 1, b = 1
- (B) $a = 1, b = \frac{1}{2}$
- (C) a = -1, b = 1
- (D) $a = -1, b = \frac{1}{2}$

- Q.84. By means of a suitable transform of the independent variable, the differential equation
 - $x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 6x + \frac{1}{x}$ reduces to the form

(A)
$$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} = 6e^{2t} + 1$$

(B)
$$\frac{d^2 y}{dt^2} + \frac{dy}{dt} = 6e^{2t} + 1$$

(C)
$$\frac{d^2 y}{dt^2} = 6e^{2t} + \log_e t$$

(D)
$$\frac{d^2 y}{dt^2} = 6e^t + 1$$

- Q.85. The series $1 + \frac{2}{6} + \left(\frac{2}{6}\right)\left(\frac{5}{12}\right) + \left(\frac{2}{6}\right)\left(\frac{5}{12}\right)\left(\frac{8}{18}\right) + \dots - \infty$ is (A) divergent
 - (B) convergent
 - (C) oscillates finitely
 - (D) oscillates infinitely

Q.86. If
$$\frac{a+b}{a-b} = \frac{1}{5}$$
, then $\frac{a^2 - b^2}{a^2 + b^2}$ is equal to
(A) 2:3
(B) 3:2
(C) 5:13
(D) 13:5

- Q.87. Two digits are selected at random from the digits (1,2,3,4,5,6,7,8,9) if 2 is the one of the digit selected, what is the probability that sum is odd?
 - (A) $\frac{5}{8}$
 - $\begin{array}{c} (B) & \frac{1}{4} \\ (C) & \frac{2}{5} \end{array}$
 - (D) $\frac{1}{5}$
- Q.88. The rational number having the decimal expansion of $0.3\overline{56}$ is

(A)	48
(11)	495
(D)	353
(B)	990
(C)	3
(C)	10
(D)	35
(D)	<u>99</u>

Q.89. If $f(x) = \frac{4^x}{2+4^x}$, then f(x) + f(1-x)is equal to (A) 0 (B) 1 (C) 2

(D) 4

Q.90. If $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \ge (\vec{b} \ge \vec{c}) = 0.5 \vec{b}$. What is the angle between \vec{a} and \vec{c} ?

- (A) 30°
- (B) 45°
- (C) 60°
- (D) 90°