

PUNJAB TECHNICAL UNIVERSITY **JALANDHAR**

Max. Marks: 90 Time: 90 Mins.

Entrance Test for Enrollment in Ph.D. Programme

Important	Instructions
-----------	--------------

>	Fill all the information in va	rious columns, in capi	ital letters, with l	blue/black ball p	oint pen.
---	--------------------------------	------------------------	----------------------	-------------------	-----------

- Use of calculators is not allowed. Use Blue/Black ball point pen for attempting the questions.
- All questions are compulsory. No negative marking for wrong answers.
- To attempt a question, make a tick mark (v) at the right option/answer.
- Each question has only one right answer.

(a) 30

(c)1000

Subject (Engg./Arch./Pharm./Mgmt./Sciences) Discipline / Branch Name		Pes) APPLIED SCIENCE MATHEMATICS
Roll No	s Name	Date : 10-07-2010
Signatu	re of Candidate	
Signatu	re of Invigilator	
1		een two points in a Riemannian space is rcle (c) geodesic (d) parabola.
2	Three coins are tossed.	What is the probability of getting at least two heads
	(a)1/2 (b)1/8	(c) 3/8 (d) 1
3	How may Mersenne's p	rimes are found till now
	(a) 40	(b) 1000
	(c) 47	(d)10 ⁵
4	Who have proved the F	ermat's Last Theorem
	(a) Fermat	(b) Andrew While
	(c) Lagrange	(d) Euler
5	$L\{\hat{o}(t)\} = \cdots \cdots$	
	(a) 0	(b) 1
	$(c)e^{-as}$	$(d)\frac{e^{-ax}}{s}$
6	$L^{-1}\left\{\frac{e^{-s\pi/2}}{s^2+1}\right\}=\cdots\cdots\cdots$	
	$(a) \sin t$	(b) none
	$(c) - \sin t$	(d) - cost
7	A sample is known a	s large sample if its size is greater than

(b) 100

(d)40

8	PUNJAB TECHN One sample t - test is us		TY, JALANDHAR	
	A CONTRACTOR OF THE CONTRACTOR		b) means of two samples	
			d)variances of two samples	
0				
9	Perfect fluids are the fluids are the fluids			
	(a) viscosity	(b) no vi		
	(c) magnetic field	(d) elect	ric field	
10	Which one is the normal fu	ızzy set		
	(a) {1/.2, 3/.6, 4/1, 6/.9}	(b) {1/.	1, 3/.6, 4/.9, 6/.7}	
	(c) {1/.5, 3/.9, 4/.7, 6/.4}	(d) {1/.	6, 3/.7, 4/.5, 6/.3}	
11	Intelligence of a person is determined by			
	(a) size of brain (b) weight	of brain (c) neu	urons in brain (d) location of brain	
12	By profession Pierre De Fe	ermat was		
	(a) mathematician (b) judg		(d) teacher	
12				
13			ve an n by n system of equations	
	using Gaussian elimination		(4) = (= 4) (2)	
	(a) n ² (b) (n+1)!	(c) n (n+1)/2	(d) n(n-1)/2	
14	Total number of additions	required to sol	ve an n by n System of equation	
	using Cramer's rule is			
	(a) n ² (b) (n+1)!	(c) n ³	(d) n(n-1)/2	
15	Number of edges of graph	with n vertices i		
	(a) ${}^{n}C_{2}$ (b) ${}^{n}C_{3}$	(c) ⁿ C ₁	(d) ⁿ C ₄	
16	Degrees of freedom is rela	ted to:		
	(a) no. of observations in a	set		
	(b) hypothesis under test			
	(c) no. of independent obs	ervations in a se	et	
	(d) none of the above			
17	Student's t-test is applicab	le only when:		
	(a) the variate values are in			
	(b) the variate is distributed	d normally		
	(c) the sample is not large			
	(d) all the above			
18	Symbol Σ suggested by			
8870	(a) Euler		(b) Bhramagupta	
	(c) Legendre		d) Lagrange	

en the Newton
e said
e said
C Salu
ble only if the on coeff. matrix
of
be taken as the
nese
point iteration
(d) $2^Z \omega$
) has an upper
ace Y. Let
nese
nese
s stone-cech

24	PUNJAB TEC			PERSONAL PROPERTY AND ADDRESS.		
31	Let $Y \subset X$ and $i:Y$ Then the topology of		the inclusion	on ma	ip such that i is c	ontinuous.
	a.		ative topolo	ogy w	ith respect to X .	
	b.	conta	ains the re	lative	topology of Y .	
	C.				elative topology of	fY.
	d.	None	of these.			
32	How many conjuga	cy classes	are there	in S ₅		
	(a) 5 (B)	6	(c) 7	(d) 8	
33	The number of ring	homomor	phisms fro	m Z	$\rightarrow 0$ is	
	(a) 1 (b)		(c) 4		d) Infinite	
34	Which of the followi					
	(a) Every nor				ries is a solvable	aroup
	(c) Every fini					group.
	(d) Every fini					
35	The number of idea	le in 7 v	7 is			
00		11	(c) 12	-	d) 13	
	(a) 10 (b)		(0) 12	,	u) 13	
36	Let F be a field of o					
	If v is a nonzero ele	ment in V	, then the	numb	er of ways to exte	end v into a
	bases of V is (a) 6 (b)	7	(c) 8	6	d) 9	
	(4) 0 (5)		(0) 0	.,	۵, ٥	
37	Groups of the which					
	(a) 6 (b)	8	(c) 30	(d) All of these	
38	How many subspace	es of dime	ension 1 a	re the	re in a two dimer	sional
	vector space over 1	8				
	(a) 2 (b)	3	(c) 4	(d) None of these	
39	If E is measurable ar	$m^*(E)$	= ∞ . then t	here o	exists a sequence	e {E_} of
	disjoint measurable s					C-117
						14 (44) 14 (44)
	(a) $E \subset \bigcup E_n$	(b) E	$=\bigcup E_n$		(c) $E\supset \bigcup_{n=1}^{\infty}E_n$	(d) All of
	these		n=1		H=1	
40	140.1.1. 641		10			
40	Which of these is m (a) Open interva			d into	nual in P	
	(c) Union of two					
	**					
41	Monotone converge					
	(a) increasing se (c) all sequences		150-500	-	sequences	
	(c) all sequences		(d) conve	gent	sequences	
42	Holder's inequality i	s valid for				
	(a) $p > 1, q > 1$ (b)	n=1==	(c) n =1	a < 1	(d) none of the	20
	(a) p > 1, q > 1 (b)	$\nu - 1 = q$	101 0 < 1.0	4 1	(u) HOHE OF THE	00

43	PUNJAB TECHNICAL UNIVERSITY, JALANDHAR Let g be integrable on $[0, 1]$ and M is a constant such that
	$\left \int fg\right \leq M \ f\ _F$ for every bounded measurable function f , then
	(a) $g \in L^q$ (b) $\ g\ _q \le M$ (c) both of these (d) none of these
44	N is non zero Banach space then $\{x \in N / x = 1\}$ is (a) Complete (b) Open (c) Closed (d) All of these
45	M is a subspace of normed linear space N and f is a functional on M . Then f can be extended to a functional f_0 on N such that
	(a) $f_0(x) = f(x) \ \forall \ x \in M$ (b) $ f_0 = f $
	(c) Both (a) and (b) are true (d) none of these
46	N and N' are normed linear spaces. T is continuous linear transformation of N into N' then norm of T is defined as (a) $ T = \sup\{ T(x) / x \le 1\}\}$ (b) $ T = \sup\{ T(x) / x = 1\}$
	(c) $ T = \sup \left\{ \frac{ Tx }{ x } / x \in N, x \neq 0 \right\}$ (d) all of these
47	Which of the following is parallelogram law (a) $ x + y ^2 - x - y ^2 + i x + iy ^2 - i x - iy ^2 = 4(x, y)$
	(b) $ x + y ^2 + x - y ^2 = 2 x ^2 + 2 y ^2$ (c) $ x + y ^2 = (x + y)^2$
	(d) none of these
48	The set of all unitary operators on Hilbert space H form a (a) Group (b) Field (c) Ring (d) Semi-group
49	If curvature and torsion of a curve are constant, then the curve is (a) Parabolic cylinder (b) Cylindrical helix (c) Circular helix (d) space curve
50	If C represents a space curve and C ₁ , the locus of the centre of the osculating sphere then the product of torsions of C and C ₁ at corresponding points is
	(a) zero (b) constant (c) product of curvatures (d) 5
51	The meridians and parallels of a surface of revolutions are (a) parallel (b) its line of curvature (c) perpendicular (d) parametric curves
52	The edge of regression of the polar developable is the locus of the centre of
	(a) osculating spheres (b) circular helix (c) circle of curvature (d) paraboloid
53	Two asymptotic lines through any point on a surface have
	(a) same curvature (b) opposite curvature (c) same torsion (d) opposite torsion

54	PUNJAB The set of all o (a) open se (c) perfect	complex nur et	mbers is not (b	a) closed set) bounded set	
55	Suppose 0 < 6	$\delta < \pi$, $f(x)$:	$= 1 \text{ if } x \le \delta ,$	$f(x) = 0$ if $\delta < x \le \pi$, and	I
	$f(x+2\pi)=f($	x) for all x.	Then $\sum_{n=1}^{\infty} \frac{\sin(n)}{n}$	$\frac{(n\delta)}{n}$ is	
	(a) $\frac{\pi}{2}$	(b) $-\frac{\pi}{2}$	(c) 0	(d) none of these	
56	$\int_{\pi}^{2\pi} \sin x d(\cos x)$				
	(a) $-\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	(c) 0	(d) 1	
57				h column of the array	
	,		1 0 0	0	
		1	-1 0	0	
		1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	
		4	2		
		8	$\frac{1}{4}$ $\frac{1}{2}$	-1	
	Then $\sum_{i}\sum_{j}a_{ij}$ equ	uals to			
	(a) 0	(D) T	(C) -1	(d) none of these	
58	Suppose f is $f(a) = f(b) = 0$			entiable function on $[a,b]$,	
	(a) 1/2	(b) 1	(c) 0	(d) -1/2	
59	Functi	ons	nily F consist Equicontine None of the	sts of uniformly bounded a	ind
	(c) Dilleteri	uable (u	None of the	330	
60		delof theore		ion $f(t,x)$ of $x' = f(t,x)$ s	hould be
				(b) Differentiable (d) None of these	
61	Non trivial solu	ation of $\frac{d^2y}{dx^2}$	$+\lambda y=0, y(0)$	$y = y(\pi) = 0$ exists for 0 (d) only for complex	
	(a) $\lambda > 0$	(b) $\lambda < 0$	(c) $\lambda =$	(d) only for complex	λ
62	A homogeneous is equal to	us equation	$L_n x = 0$ is so	elf adjoint if the adjoint ope	erator $\overline{L_n}$
	*	(b) = I	(c) I 2	(d) none of these	

	PUNJAB TECHNICAL UNIVERSITY, JALANDHAR
63	$\frac{d^2y}{dx^2} - \frac{dy}{dx} + f(y) = 0 \text{ is } \dots \text{equation}$
	(a) parabolic (b) elliptic (c) hyperbolic (d) none of these
64	In any undirected graph, the sum of degrees of all the vertices (a) must be even (b) is twice the number of edges (c) must be odd (d) both (a) and (b)
65	Preorder traversal is nothing but
66	The principle of duality is defined as (a) ≤ is replaced by ≥ (b) lub is replaced by glb (c) All properties not altered when ≤ is replaced by ≥ (d) All properties not altered when ≤ is replaced by ≥ other then 0 and 1 element.
67	Which of the following set is connected?
	(a) $\{z:-1< z <1\}\cup\{2\}$ (b) $\{z:-\pi/4<\arg z\le\pi/4\}$
	(c) $\{z: z <1\} \cup \{z: z-1 <1\}$ (d) none of these
68	The function $f(z) = z \operatorname{Re} z$ is differentiable at (a) origin (b) $z = 1$ (c) $z = -1$ (d) none of these
69	Log(z-1) is analytic except on the (a) Half plane $x \le 0$ (b) Half line $x \le 0$ $(y=1)$ (c) Half line $x \le 0$ $(y>1)$ (d) none of these
70	The value of $\int_{ z =1}^{\infty} \frac{\sinh z}{z^2(z-2)} dz$ is
	(a) π (b) πi (c) $\pi^2 i$ (d) none of these
71	The transformation which transforms the upper half plane into the lower half plane is
	(a) $w = \overline{z}$ (b) $w = \frac{z - i}{z + i}$ (c) $w = 1/z$ (d) none of these
72	The number of zeros counting multiplicaties of the polynomial $z^5 + 3z^3 + z^2 + 1 = 0$ inside the circle $ z = 2$ is
	(a) 0 (b) 2 (c) 3 (d) 5
73	The value of $\int_{\gamma} \cot z dz, z = 4e^{4i\theta}, -\pi \le \theta \le \pi$ is (a) $6\pi i$ (b) $-6\pi i$ (c) $24\pi i$ (d) $16\pi i$
	(a) $6\pi i$ (b) $-6\pi i$ (c) $24\pi i$ (d) $16\pi i$
74	The domain of convergence of the series $\sum n^2 \left(\frac{z^2+1}{1+i}\right)^n$ is
	(a) $ z+1 < 2$ (b) $ z^2+1 < \sqrt{2}$
	(c) $ z^2 + 1 < 2$ (d) $ z + 1 < \sqrt{2}$

75	The efficiency index of an iterative method is defined by
	(a) $p^{1/n}$ (b) p^n (c) p^{n^2} (d) none of these
76	An analytic function whose only singularities in the finite complex plane are is called a meromorphic function.
	(a) essential (b) isolated (c) non isolated (d) none of these
77	If the height of a tree is 10, the highest level of the tree is (a) 10 (b) 9 (c) 5 (d) 1
78	In Fibonacci search technique with n=5 and $L_0 = 1$, the measure of effectiveness is (a) 0.001 (b) 0.01 (c) 0.1 (d) 0.125.
	(a) 0.001 (b) 0.01 (c) 0.1 (d) 0.120.
79	The function $F(x) = 3x_1^2 - 2x_2^2 + x_3^2$ is (a) positive definite (b) positive semi-definite (c) negative definite (d) indefinite.
80	Which one of the following is not a deterministic model (a) Linear programming problem (b) Transportation problem (c) CPM (d) PERT.
81	In a balanced transportation problem with m sources and n destinations the number of dual constraints will be (a) m+n (b) m+n+1 (c) m+n-1 (d) mn
82	Addition of variable and deletion of a constraint simultaneously to a LPP (a) disturbs feasibility (b) disturbs optimality (c) may disturb both feasibility and optimality (d) none of these.
83	If the dual LPP has an unbounded solution, then the primal problem has
	(a) Optimal solution (b) infeasible solution (c) unbounded solution (d) none of these.
84	Let min $f(X) = C^T X$, $AX \ge b$, $X \ge 0$ be a primal LPP. Suppose X_0 and
	Y_0 are the primal and dual feasible. Then
	(a) $C^T X_0 \le b^T Y_0$ (b) $C^T X_0 \ge b^T Y_0$
	(c) $C^T X_0 = b^T Y_0$ (d) None of these.
85	The set $P_F \setminus A$, where A is the set of all vertices of P_F is
	(a) convex set (b) not a convex set (c) may or may not be convex (d) none of these
86	Consider the set $S = \{(x_1, x_2); x_2^2 \le x_1\}$. Then S has
	(a) no vertex (b) finite number of vertices (c) infinite number of vertices (d) None of these

PUNJAB TECHNICAL UNIVERSITY, JALANDHAR Application of dual simplex method requires that availability vector b 87 must satisfy (a) $b \ge 0$ (b) $b \le 0$ (c) no restriction of (a) and (b) type (d) b = 088 The Boolean function $\overline{xy} + xy + \overline{xy}$ is equivalent to (b) x + y (c) x + y(a) x + y(d) x+y89 The solution of $\frac{dx}{dt} = x^2, x(1) = -1....on[0,1]$ (a) can be continued (b) cannot be continued (c) exists (d) none of these 90 Let $A = N \times N$, and the set $F_{\{m,n\}} = \{(x,y): x, y \in R \text{ and } |x| > m, |y| > n\}$ then

Let $A = N \times N$, and the set $F_{\{m,n\}} = \{(x,y): x, y \in R \text{ and } |x| > m, |y| > n\}$ ther $\bigcap F_{\{m,n\}}$ equals to

(a) 0 (b) 1 (c) $\cap F_{\{m,n\}}$ does not have finite intersection property

(d) none of these