PEROPHICAL MEDICAL MED

PUNJAB TECHNICAL UNIVERSITY JALANDHAR

Max. Marks: 90 Time: 90 Mins.

Entrance Test for Enrollment in Ph.D. Programme

Important Instructions

- Fill all the information in various columns, in capital letters, with blue/black ball point pen.
- > Use of calculators is not allowed. Use Blue/Black ball point pen for attempting the questions.
- > All questions are compulsory. No negative marking for wrong answers.
- \succ To attempt a question, make a tick mark ($\sqrt{}$) at the right option/answer.
- > Each question has only one right answer.
- Questions attempted with two or more options/answers will not be evaluated.

		•	-					
Subject (Engg./Arch./Pharm./Mgmt./Sciences)		ENGINEERING / APP. SCI.						
Discip	Discipline / Branch			BIO-TECHNOLOGY				
Name								
Father	r's Name							
Roll N	0.			Date : 10-07-2010				
Signat	ure of C	andidate						
Signat	ure of In	vigilator						
1				g including the initiator and termination protein translated from this mRNA will be:				
	(A) (C)	666 221	(B) (D)	220 222				
2.	How	many base pairs are present	extra in Z	Z-DNA as compared to A -DNA?				
	(A) (C)	1 3	(B) (D)	2 4				
3.	In a t	rinucleotide ATC denotes th	ne,					
	(A) (C)	5'P-ATC-3'OH 5'OH-ATC-3'P	(B) (D)	3'P-ATC-5'OH 3'0H-ATC-5'P				
4.	single relatio	stranded DNA at the same	concentar	value of A_{260} =1.00 , after denaturation to rtion it has a value of A_{260} = 1.37. This able stranded DNA has become				
	(A) (C)	Hypochromic Chromosensitive	(B) (D)	Hyperchromic Isochromic				
5.	Each (A) (C)	-	(B) (D)	emoving nucleotides only from 3' end of the strand Either 5' or 3' end of the strand				

6.		zymes act upon phosphodiester bonds of r							
	(A)	· ·	3)	Join them					
	(C)	Both cleave as well as form them (Γ)))	can act on bonds other than					
				phoshpodiester bonds as well					
7.	For the	he DNA fragment TACGATCATAT' the	com	plementary sequence would be:					
	(A)	TACGAT CATAT' (B) ATATG	ATC	GTA					
	(C)	AUGC U AGUAUA (D) ATGCT	AGT	ATA					
8.	Which	sh of the fellowing is not next of the normal	1	sees of claning recombinant DNA in					
٥.	Which of the following is not part of the normal process of cloning recombinant DNA in bacteria?								
	(A	restriction endonuclease digestion of co		-					
	(B)	production of recombinant DNA using cellular and plasmid DNAs.	DNA	A ligase and a mixture of digested					
	(C)	separation of recombinant DNAs by electrophoresis using the Southern technique to determine where the desired recombinant migrates.							
	(D)	transformation of bacteria by the recomampicillin.							
9.	One o	of the most significant discoveries that all	owed	the development of recombinant					
· ·		technology was:	<i>,,,</i> C C	tine de reropinem er recomonium					
	(A)	the discovery of antibiotics used for se	lectir	no transformed hacteria					
	(B)	· · · · · · · · · · · · · · · · · · ·		_					
	()	B) the identification and isolation of restriction endonucleases permitting specific DNA cutting.							
	(C)	the discovery of DNA and RNA polyme	erase	allowing workers to synthesize any					
		DNA sequence.							
	(D)	the development of the polymerase char	in rea	action.					
10.	In disc	scontinous synthesis of DNA							
	(A)	Leading and Lagging strand are synthes	sized	discontinously					
	(B)	Leading strand is synthesized discontin		•					
	(C)	Lagging strand is synthesized continous	-						
	(D)	Leading strand is synthesized continuou	ısly a	and lagging strand is synthesized					
		discontinously.							
11.	Which	ch of the following statements is true for C) kaza	ki Fragments?					
	(A)								
	(B)	These are precursor fragments created on leading strand							
	(C)	These are naturally fragmentated DNA molecules							
	(D)	These DNA fragments are generated by	rest	riction enzymatic action.					
12.		many times more ATP is produced when	gluc	cose is converted to CO ₂ and H ₂ O than					
		it is converted to lactic acid?)						
	(A) (C)	4 (B) 19 15 (D) 30							
	(C)	15 (D) 30	,						
13.		najor category of proteins to which antibo							
	(A)	· · ·		a globulins					
	(C)	Beta globulins (D) G	lycop	proteins					
14.	The pr	proteins get separated on the basis of their	mole	ecular weight by :					
-	(A)			romatography					
	(C)			otion chromatography					
		·	-						

15.		9	-	peptide of less than ten amino acids?				
	(A)	insulin	(B)	growth hormone				
	(C)	oxytocin	(D)	parathyroid hormone				
16.	Whice react	_	most se	ensitive quantitation of antigen- antibody				
	(A)	Agglutination	(B)	Precipitation				
	(C)	Radio-immunoassay (RIA)	(D)	Radial immunodiffusion				
17.	The antibody diversity generating gene segment 'D' is present in:							
	(A)	Heavy chain genes	(B)	Light chain genes				
	(C)	Lambda domain DNA	(D)	Delta domain DNA				
18.		sequences that direct tissue an tation and position-independen	_	e specific expression of genes and function in on are:				
	(A)	TATA elements	(B)	enhancer elements				
	(C)	Shine-Dalgarno sequence	(D)					
10	XX71- : -:	1	4					
19.		h one among the following is n						
	(A)	Adenosine	(B)	Guanosine				
	(C)	Cytosine	(D)	Uridine				
20.	UV-n	nutagenesis results in:						
	(A)	C-C dimer formation	(B)	Methyl group addition to nitrogen base				
	(C)	T-T dimer formation	(D)	Excision of a base from DNA strand				
21.	Which (A) (C) (D)	Binding of tRNA to a 30S p	article o riboso	protein synthesis in prokaryotes? (B) Binding of t RNA to a 70S ribosome ome by an aminoacyl synthetase form 30S and 50S particles.				
22.	Whic	h of the following is the norma	ıl cause	of chain termination?				
	(A)	-		n – termination triplet cannot bind an				
	(B)	There is no t RNA with an ar		on corresponding to a chain termination triplet.				
	(C)	Messenger RNA synthesis st	-	<u> </u>				
	(D)	The t RNA corresponding to that peptide bond is later cle		n – termination triplet can bind an aminoacid y special proteases.				
23.	Whic	h of the following statements is	s false	about tRNA molecules?				
	(A)	They are needed because am	ino aci	ds cannot stick to mRNA.				
	(B)	They are much smaller than	mRNA	molecules.				
	(C)	They are synthesized withou	t the ne	eed for intermediary m RNA.				
	(D)	They bind amino acids without	out the	need for any enzyme.				
24.	Coulc	d a supercoiled DNA molecule	be form	ned by				
	(A)	Joining the ends of a linear I	NA m	olecule and twising the resulting circle.				
	(B)	_		nolecule and then linking the ends together.				
	(C)	Linking together the ends of						
	(D)	Twising the ends of a linear						

25.		* *	ie stranc	aea DN		placed in distilled water.		
	(A)	It would denature			(B)	It would stay as such		
	(C)	It would twist up to	make		(D)	Water molecules will attach to DNA		
		supercoiled structure	e			covalently		
26.	Matc	h the correct combinat	ion:					
	(a)	Protein structure	(1)	North	ern blot			
	(b)	DNA transfer	(2)	Maxam Gilbert				
	(c)	DNA sequencing	(3)		chandra			
	(d)	RNA transfer	(4)		ern Blo	<u>=</u>		
	(A)	a-2, b-4, c-3, d-1	(B)		-1, c-2, c			
	(C)	a-3, b-4, c-2, d-1	(D)		-1, c-3, c			
27.	Mito	chondria is involved in	all of th	ne follov	wing cel	llular processes, except		
	(A)	ATP-production		(B)	Apopt	tosis		
	(C)	Tricarboxylic acid c	ycle	(D)	Fatty	acid biosynthesis		
28.		should be the avreage is 110.	weight	of a dec	capaptid	e if the average weight of an amino		
	(A)	1100		(B)	1200			
	(C)	1000		(D)	990			
29.	Who	can function as energ	v sensor	and reo	ulator o	of linid metabolism?		
<i>27</i> .	(A)	AMP	y sensor	(B)	ATP	in the metabolism:		
	(C)	GMP		(D)	GTP			
•	, ,			(D)	OII			
30.		lose is a polymer of		(D)	GI (
	(A)	-Glu-α 1, 4 Glu-		(B)		3 1, 4 Glu-		
	(C)	-Glu-α l, 4 Gal-		(D)		β 1, 4 Gal		
31	of the reduce expense.	e purified protein in etion of the protein) sho	the pre ows a sines betwe	esence on gle bar een alco	of sodiund of 60 ohol del	hydrogenase (MW = $160,000$) and B-		
32.	An A	llele can be cosidered Do	ominant i	if it				
	(A) determines the phenotype in a homozygous condition							
	(B)	determines the phenot		-	-			
	(C) (D)	determines the genoty determines the genoty						
33.		Sarcoma virus uses the f	_					
55.	(A)	DNA dependent DNA	_	•	101 115 1	opineum.		
	(B)	RNA dependent RNA						
	(C)	DNA dependent RNA	Polyme	rase				
	(D)	RNA dependent DNA	Polyme	rase				
34.		erm pronucleus describes						
	(A)	only the maternal nuc		•		· · · · · ·		
	(B)	only the paternal nucle		-		•		
	(C) (D)	cell nuclei from a tran			uernai oi	paternal in a newly fertilized embryo		
	(\mathbf{D})	cen nuclei moni a tian	siccicu C	VII				

35.		r Savr' tomatoes were obtained b		_	-		
	(A)	ACC deaminase	(B)		synthase		
	(C)	Sucrose phosphate synthase	(D)	Isopei	ntenyl transferase		
36.		-			eenzme biocatalyses the reaction.		
	(A)	Renin	(B)				
	(C)	Bromelain	(D)	Gluco	ose isomerase		
37.	All of	f the following can be used immo	bilizatio		_		
	(A)	Adsorption	(B)	Entraj			
	(C)	Microencapsulation	(D)	Absor	ption		
38.	Drug discovery can be made more efficient using						
	(A)	Affinity fingerprinting	(B)		oody fingerprinting		
	(C)	Affinity chromatography	(D)	Antib	body based detection methods		
39.	Matc	th the micro organism with correc	t antibio	otics			
	(a)	Penicillium	(1)	Eryth	romycin		
	(b)	Streptomyces griseous	(2)	Strept	omycin		
	(c)	Streptomyces erthreus	(3)	Nocar	rdins		
	(d)	Nocordia uniformis	(4)	Penic	illin		
	(A)	a-4, b-2, c-1, d-3	(B)	a-3, t	o-2, c-1, d-4		
	(C)	a-3, b-4, c-1, d-2	(D)	a-4, t	o-2, c-3, d-1		
40.	The term Biohydrometallurgy describes						
	(A)	Metal extraction from ores using	ng bacte	rial activ	vity		
	(B)	·					
	(C)	Extracting bacteria from soil u	sing me	tals			
	(D)	Increasing metal concentration	in soil	using ba	cterial activity		
41.	Transcriptomics can be defined as the study of:						
	(A)	a particular gene product		(B)	all the mRNAs in the cell		
	(C)	all RNAs in the cell		(D)	diffeential gene expression		
42.	Whic	ch of the following is the live a	ttenuate	ed vacci	ne?		
72.		Diphtheria	ttC11uatt				
	(A)	-		(B)	Oral polio		
	(C)	Tetanus Toxoid		(D)	Pertusis		
43.	What unit of measure is used for the molecular weight of proteins?						
	(A)	kDa		(B)	ug		
	(C)	kb		(D)	bp		
44.	Kinase types of reactions can						
	(A)	inhibit ATP breakdown					
	, ,	(B) involve the transfer of a phosphate group					
	(C)	involve the transfer of a keto	-				
	(D)				o acid to a polypeptide chain		
45.	The L	nalf life of 32P is:					
+⊅.				(D)	6 hva		
	(A)	14 days		(B)	6 hrs		
	(C)	1.4 hrs		(D)	6 days		

46.	All o	All of these are restriction endonucleases except							
	(A)	Eco RI		(B)	ColE 1				
	(C)	Hind II		(D)	Hae III				
47.	-	glass bead column bioreactors	can be u						
	(A)	suspension cultures		(B)	anchorage depende	nt cultures			
	(C)	primary cultures		(D)	secondary cultures				
48.		A in HEPA filters stands for							
	(A)	High efficiency Particulate		(B)	High Eluting Partic				
	(C)	High efficiency purified air		(D)	High efficiency per	forming air.			
49.		devastating viral disease of				lisease), the major			
	_	enic determinant used for gen	erating v						
	(A)	VP1		(B)	HSV1	D			
	(C)	MS2		(D)	HSV glycoprotein	D			
50.		f these are features of Humora		-					
	(A)	can be stimulated by free a	_	in circu	lation				
	(B)	the production of cytotoxic							
	(C) (D)	antigen-antibody interaction the synthesis of immunoglo							
	(D)	the synthesis of minimunogic	ouiiiis						
51.		ort DNA molecule is subjected				A C G T			
	for D	NA sequencing using dideoxy	ynucleos	ide trip	hosphates as	A C G I (
		-terminators and a ³² P-labeled							
		equencing gel is shown. The n	ucleotid	e seque	nce read from the				
	gel is (A)	5' CCGAGGTCAG 3'	(B)	5' G A	CTGGAGCC 3'	_			
	(A) (C)	5' AACCCGGGGT 3'	(D)		GGGCCCAA3'	=			
	(C)	J AACCCOOOT J	(D)	3 10	COOCCCAA3 [
52.		tion of MHC molecules is to							
		to kill the microorganisms	aanaratii	na antih	odias				
	(B) to assist B-lymphocytes in generating antibodies(C) to present foreign antigens to cytotoxic T-cells								
	(D)	to generate cytotoxic T-cell)XIC 1-C	CIIS				
	(D)	to generate cytotoxic i cen	.5						
53.		Which of the following hormones can execute biological actions by crossing the plasma							
	(A)	brane followed by receptor as Glucagon	zuvauon	(B)	Estradiol				
	(C)	Insulin		(D)	Norepinephrine				
54.	The f	The first protein structure to be deciphered for its primary structure was							
J 1.	(A)	insulin	.ipiicicu	(B)	urease				
	(C)	myoglobin		(D)	ribonuclease				
55.	Zvmo	ogens are							
	(A)	enzymes		(B)	inactive enzyme pro	ecursors			
	(C)	enzyme precursors		(D)	lipids				

56.	Which amongst the following is the choicest method for transport of a solute against its concentration							
	(A) (C)	active transport diffusion	(B) (D)	passive transport osmosis				
	, ,		. ,	OSITIOSIS				
57.		ycolysis, ATP synthesis is catalyzed	•					
	(A)	hexokinase	(B)	6-phosphofructo kinase				
	(C)	phosphoglycerate kinase	(D)	glyceraldehyde 3-phosphate dehydrogenase				
58.	The term hybridoma refers to fusion of							
	(A)							
	(B)	any cell with a single myeloma ce	ell					
	(C)	an antibody producing cell with ar	ny cell					
	(D)	a myeloma cell with another myel	oma cell					
59.		f these are key reulatory enzymes of						
	(A)	malate dehydrogenase	(B)	Isocitrate dehydrogenase				
	(C)	α -oxoglutarate dehydrogenase	(D)	glutamate dehydrogenase				
60.		ne following are proteolytic enzymes	_					
	(A)	Enteropeptidase	(B)	Aminopeptidases				
	(C)	Prolidases	(D)	lipases				
61.	Measurement of radioactivity can be done in any of these units except							
	(A)	Curie	(B)	Roentgen				
	(C)	Radiation absorbed dose	(D)	Radioactive decay				
62.		The entry of HIV virus in the target host cell takes palce when viral envelope fuses with the plasma membrane of the cell by a process mediated by viral						
	(A)	enveolpe glycoprotein	(B)	enveolpe lipoprotein				
	(C)	internal glycoprotein	(D)	structural proteins				
63.	The gag gene of HIV genome codes for							
	(A)	major capsid protein p24	(B)	major capsid protein p42				
	(C)	major capsid protein p56	(D)	major capsid protein p65				
64.		. coli strain has a mutation in the RN						
	assoc cataly	ciation with sigma factor. This is experience	ected to	cause an inability of the enzyme to				
	(A)	elongation of RNA.	(B)	recognize operators.				
		recognize terminators.	(D)	recognize promoters.				
65.	cDN2	A can be defined as						
	(A)	complementary DNA strand made	e against	DNA				
	(B)	a conformation of DNA						
	(C)	complementary DNA made agains	st mRNA	L				
	(D)	complementary DNA made agains	et t RNA					

	(A) (C)	Alanine Tryptophan	(B) (D)	Tyrosine Glycine				
	(C)	Турюрнан	(D)	Glyellie				
67.		CA cycle, substrate level phosphorylation						
	(A)	Citrate synthase	(B)	Succinate thiokinase				
	(C)	Succinate dehydrogenase	(D)	Malate dehydrogenase				
68.	Which amongst the following lipids has a signal transducing function?							
	(A)	Phosphatidyl choline	(B)	Phosphatidyl serine				
	(C)	Phosphatidyl ethanolamine	(D)	Phosphatidyl inosital-4, 5-				
				bisphosphate				
69.				e Gel Electrophoresis (SDSPAGE) one				
	SDS r	nolecule binds how many amino acids	on ave	erage:				
	(A)	one	(B)	two				
	(C)	three	(D)	four				
70.	Enzyn	nes catalyse reactions by						
	(A)	lowering activation energy	(B)	enhancing Keq				
	(C)	increasing free energy	(D)	decreasing free energy				
71.	Shine dalgarno sequences are present in							
	(A)	5´ end of eucaryotic mRNA	(B)	5´ end of eucaryotic Rrna				
	(C)	3' end of eucaryotic mRNA	(D)	3´ end of eucaryotic rRNA				
72.	The H	IAT selection in hybridoma technolog	y helps	S				
	(A)	cells grow in the presence of antibio	tic					
	(B)	cells grow in the absence of antibiot	ics but	in presence of vitamins				
	(C)	growth of hybrid cells that can utiliz	e both	pathways for nucleotide biosynthesis				
	(D)	growth of hybrid cells that can use s	alvage	pathway of nucleotide biosynthesis				
73.	The co	ells that have potential to develop into	entire	organism are known as				
	(A)	Totipotent cell	(B)	Multipotent cells				
	(C)	Pleuripotent cells	(D)	Unipotent cells				
74.	Ubiq	uitination process in the eukarotic cell	is requ	ired for				
	(A)	Protein remodeling	(B)	Protein degradation				
	(C)	Ubiquitous protein processing	(D)	Uniform distribution of cytosolic Proteins				
75.	The ba	asic principle involved in CsCl gradie	nt centr	rifugation that helps in separation of				
	DNA fragments.							
	(A) DNA fragments can move and accumulate at a position where the density of the							
		DNA and CsCl is same		-				
	(B)							
	(C)	Linear DNA will pellet while circula	ar DNA	will form a band				
	(D)	Circular DNA will not penetrate the	gradie	nt being smaller in size				
76.	Apopt	tosis can be defined as						
	(A)	a process of programmed cell death	(B)	a process of phagocytosis				
	(C)	a process of necrotic cell death	(D)	a process of traumatic cell death				

Identify the nutritionally essential amino acid out of the following

66.

77.	Epito (A) (B) (C) (D)	pe of a macromlecule is the antigenic determinant extremely hydrophobic part of the autocrine signalling molecule exposed part of molecule	molecule					
78.	Which statement amongst the following is not true for shot gun approach of genome sequencing							
	(A) (B) (C) (D)	the chromosomes are initially map the approach generates a large num	nber of some nenced some times nm is req	equenced DNA fragments of that overall length of the fragments uired to join the pieces of random				
79.	Ident	ify the compound with the highest sta						
19.	(A)	ATP	(B)	Phosphoenol pyruvate				
	(C)	Phosphocreatine	(D)	Glucose –6-phosphate				
80.	Which material amongst the following cannot be used as matrix in type of liquid chromatography techniques							
	(A)		(B)	chitin				
	(C)	polystyrene	(D)	agarose				
81	Prote	omics is the study of						
	(A)	all proteins in an organism	(B)	genes coding proteins				
	(C)	only structural proteins of a cell	(D)	only regulatory proteins of a cell				
82.		The functionally active form of vitamin D is						
	(A)	cholecalciferol	(B)	ergocalciferol				
	(C)	dehydrocholesterol	(D)	calcitriol				
83.	In the β oxidation of odd chain fatty acids, two products are formed acetyl CoA and propionyl CoA. To divert propionyl to TCA cycle it is converted into							
	(A)	succinyl CoA	(B)	fumaryl CoA				
	(C)	oxaloacetate	(D)	oxalosuccinate				
84.	The meaning of E-value in BLAST is (A) the probability that the query sequence and the subject sequence come from same							
		organism						
	(B)	· · · · · · · · · · · · · · · · · · ·						
	(C)							
	(D)		en the qu	ery sequence and the subject sequence				
85.		irst genome sequence submitted to E						
	(A)	H.influenzae	(B)	D.melaogaster				
	(C)	S.cerevisiae	(D)	A.thaliana				

77.

86.	The s	The stop codons UAA,UAG and UGA are named respectively						
	(A)	ochre, amber and opal	(B)	amber, ochre and opal				
	(C)	ochre ,opal and amber	(D)	opal, amber and ochre				
87.	A cos	smid can be used as a cloning vector be	ecause i	t has				
	(A)	a plasmid origin of replication (ori)	(B)	a λ cos site				
	(C)	a unique restriction site	(D)	all of these characters.				
88.	George Gey established HeLa cell line in 1952 fromtissue							
	(A)	cervical	(B)	Hepatic				
	(C)	Pancreatic	(D)	Kidney				
89.	In the insect resistant transgenic crops <i>Cry</i> genes is derived from							
	(A)	Bacillus thuringiensis	(B)	Bacillus subtilis				
	(C)	Clavibacter xyli	(D)	Pseudomonas fluorescens				
90.	_	varities are subjected to intellectual pr	operty	rights in the form of PBR. PBR is an				
	(A)	plant Breeder's Rights	(B)	plant buyers rights				
	(C)	- -	(D)	pesticide resistant breeder's research consortium				