CHENNAI MATHEMATICAL INSTITUTE
Graduate Programme in Mathematics

Entrance Examination, 2011

Part A

State whether True or False and give brief reasons. Marks will be given only when reasons are
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provided. Answer any 10 questions in this part. All questions carry 5 marks.

. There is a sequence of open intervals I, C R such that (2, I, = [0,1].
. The set S of real numbers of the form % with m,n € Z and n > 0 is a dense subset of R.
. There is a continuous bijection from R? — R.

. There is a bijection between Q and Q x Q.

I {an 2y, {bn}02, are two sequences of positive real numbers with the first converging to

zero, and the second diverging to oo, then the sequence of complex numbers ¢, = a,e’*" also
converges to zero.

. For any polynomial f(x) with real coefficients and of degree 2011, there is a real number b

such that f(b) = f/(b).
If f:]0,1] — [—m, 7] is a continuous bijection then it is a homeomorphism.

For any n > 2 there is an n x n matrix A with real entries such that A2 = A and trace (A) =
n+ 1.

. There is 2 x 2 real matrix with characteristic polynomial 2 + 1.

There is a field with 10 elements.

There are at least three non-isomorphic rings with 4 elements.

The group (Q, +) is a finitely generated abelian group.

Q(v/7) and Q(+/17) are isomorphic as fields.

A vector space of dimension > 2 can be expressed as a union of two proper subspaces.
There is a bijective analytic function from the complex plane to the upper half-plane.

There is a non-constant bounded analytic function on C\ {0}.



Part B
Answer any five questions. All questions carry 10 marks

(a) Consider the ring R of polynomials in n variables with integer coefficients. Prove that
the polynomial f(z1,x2,...,2,) = 122 - - - T, has 2" — 2 non-constant polynomials in
R dividing it.

(b) Let p1,p2,. .., py be distinct prime numbers. Then show that the number N = pyp2p3 - - - p2
has (n + 1)! positive divisors.

. Let f(z) = (2® — 2)(22 — 3)(2% — 6). For every prime number p, show that f(z) =0 (mod p)
has a solution in Z.

. Let S denote the group of all those permutations of the English alphabet that fix the letters
T,E,N,D,U,L K,A and R. Other letters may or may not be fixed. Show that S has elements
o, T of order 36 and 39 respectively, but does not have any element of order 37 or 38.

. Show that there are at least two non-isomorphic groups of order 198. Show that in all those
groups the number of elements of order 11 is the same.

. Suppose f,g,h are functions from the set of positive real numbers into itself satisfying

f(@)g(y) = h(\/x?2 +y?) forall z,y € (0,00). Show that the three functions f(z)/g(x), g(z)/h(x),
and h(x)/f(x) are all constant.

. Let a,b > 0.

(a) Prove that lim, .. (a" 4 b")"/" = max{a, b}.

(b) Define a sequence by x1 = a,z92 = b and x,, = %(azn,l + z5,—2) for n > 2. Show that
{z,,} is a convergent sequence.

. Let f: C — C be an entire function with the following property: In the power series expan-
sion around any a € C, given as f(z) =Y o2 cn(a)(z — a)", the coefficient c,(a) is zero for
some n ((with n depending on a). Show that f(z) is in fact a polynomial.

(a) Show that in a Hausdorff topological space any compact set is closed.
(b) If (X, d;) and (Y, dz) are two metric spaces that are homeomorphic then does complete-
ness of (X, d;) imply the completeness of (Y, d2)? Give reasons for your answer.

. Fix an integer n > 1. Show that there is a real n x n diagonal matrix D such that the
condition AD = DA is valid only for a diagonal matrix A.



