CHENNAI MATHEMATICAL INSTITUTE Graduate Programme in Mathematics - M.Sc./Ph.D.

Entrance Examination, 2012

100

Part A

State whether True or False and give brief reasons in the sheets provided. Marks will be given only when reasons are provided. Try to answer 10 questions. Each question carries 5 marks.

- 1. The function $f : \mathbb{R}^n \to \mathbb{R}$, defined as $f(x_1, \dots, x_n) = Max\{|x_i|\}, i = 1, \dots, n$, is uniformly continuous.
- 2. Let x_n be a sequence with the following property: Every subsequence of x_n has a further subsequence which converges to x. Then the sequence x_n converges to x.
- 3. Let $f: (0, \infty) \longrightarrow \mathbb{R}$ be a continuous function. Then f maps any Cauchy sequence to a Cauchy sequence.
- 4. Let $\{f_n : \mathbb{R} \longrightarrow \mathbb{R}\}$ be a sequence of continuous functions. Let $x_n \longrightarrow x$ be a convergent sequence of reals. If $f_n \longrightarrow f$ uniformly then $f_n(x_n) \longrightarrow f(x)$.
- 5. Let $K \subset \mathbb{R}^n$ such that every real valued continuous function on K is bounded. Then K is compact (i.e closed and bounded).
- 6. If $A \subset \mathbb{R}^2$ is a countable set, then $\mathbb{R}^2 \setminus A$ is connected.
- 7. The set $A = \{(z, w) \in \mathbb{C}^2 \mid z^2 + w^2 = 1\}$ is bounded in \mathbb{C}^2 .
- 8. Let $f, g : \mathbb{C} \longrightarrow \mathbb{C}$ be complex analytic, and let $h : [0, 1] \longrightarrow \mathbb{C}$ be a non-constant continuous map. Suppose f(z) = g(z) for every $z \in \text{Im } h$, then f = g. (Here Im h denotes the image of the function h.)
- 9. There is a field with 121 elements.
- 10. The matrix $\begin{pmatrix} \pi & \pi \\ 0 & \frac{22}{7} \end{pmatrix}$ is diagonalizable over \mathbb{C} .
- 11. There are no infinite group with subgroups of index 5.
- 12. Every finite group of odd order is isomorphic to a subgroup of A_n , the group of all even permutations.
- 13. Every group of order 6 abelian.

- 14. Two abelian groups of the same order are isomorphic.
- 15. There is a non-constant continuous function $f : \mathbb{R} \to \mathbb{R}$ whose image is contained in \mathbb{Q} .

Part B

Each question carries 10 marks. Try to answer 5 questions.

- 1. Suppose $f : \mathbb{R} \to \mathbb{R}^n$ be a differentiable mapping satisfying ||f(t)|| = 1 for all $t \in \mathbb{R}$. Show that $\langle f'(t), f(t) \rangle = 0$ for all $t \in \mathbb{R}$. (Here ||.|| denotes standard norm or length of a vector in \mathbb{R}^n , and $\langle ., . \rangle$ denotes the standard inner product (or scalar product) in \mathbb{R}^n .)
- 2. Let $A, B \subset \mathbb{R}^n$ and define $A + B = \{a + b; a \in A, b \in B\}$. If A and B are open, is A + B open? If A and B are closed, is A + B closed? Justify your answers.
- 3. Let $f: X \mapsto Y$ be continuous map onto Y, and let X be compact. Also $g: Y \mapsto Z$ is such that $g \circ f$ is continuous. Show g is continuous.
- 4. Let A be a $n \times m$ matrix with real entries, and let $B = AA^t$ and let α be the supremum of $x^t B x$ where supremum is taken over all vectors $x \in \mathbb{R}^n$ with norm less than or equal to 1. Consider

$$C_k = I + \sum_{j=1}^k B^j.$$

Show that the sequence of matrices C_k converges if and only if $\alpha < 1$.

- 5. Show that a power series $\sum_{n\geq 0} a_n z^n$ where $a_n \to 0$ as $n \to \infty$ cannot have a pole on the unit circle. Is the statement true with the hypothesis that (a_n) is a bounded sequence?
- 6. Show that a biholomorphic map of the unit ball onto itself which fixes the origin is necessarily a rotation.
- 7. (i) Let $G = GL(2, \mathbb{F}_p)$. Prove that there is a Sylow p-subgroup H of G whose normalizer $N_G(H)$ is the group of all upper triangular matrices in G.

(ii) Hence prove that the number of Sylow subgroups of G is 1 + p.

- 8. Calculate the minimal polynomial of $\sqrt{2}e^{\frac{2\pi i}{3}}$ over \mathbb{Q} .
- 9. Let G be a group \mathbb{F} a field and n a positive integer. A linear action of G on \mathbb{F}^n is a map $\alpha : G \times \mathbb{F}^n \to \mathbb{F}^n$ such that $\alpha(g, v) = \rho(g)v$ for some group homomorphism $\rho : G \to \operatorname{GL}_n(\mathbb{F})$. Show that for every finite group G, there is an n such that there is a linear action α of G on \mathbb{F}^n and such that there is a nonzero vector $v \in \mathbb{F}^n$ such that $\alpha(g, v) = v$ for all $g \in G$.
- 10. Let R be an integral domain containing a field F as a subring. Show that if R is a finite-dimensional vector space over F, then R is a field.