

Post Graduate School Indian Agricultural Research Institute, New Delhi

Examination for Admission to Ph.D. Programme 2011-2012

Discipline

: Agricultural Statistics

Discipline Code: 06

Roll No

Please Note:

- (i) This question paper contains 12 pages. Please check whether all the pages are printed in this set. Report discrepancy, if any, immediately to the invigilator.
- (ii) There shall be NEGATIVE marking for WRONG answers in the Multiple Choice type questions (No. 1 to 95) which carry one mark each. For every wrong answer 0.25 mark will be deducted.

PART - I (General Agriculture)

Multiple choice questions (No. 1 to 30). Choose the correct answer (a, b, c or d) and enter your choice in the circle (by shading with a pencil) on the OMR - answer sheet as per the instructions given on the answer sheet.

- Which of the following crops have been approved for commercial cultivation in India?
- a) Bt cotton and Bt brinjal
- b) Bt cotton and Golden Rice
- c) Bt maize and Bt cotton
- d) Bt cotton only
- 2. This year (2010-11) the expected food grain production in India is
- a) 212 million tonnes
- b) 220 million tonnes
- c) 235 million tonnes
- d) 250 million tonnes
- 3. The genome of which of the following crops is still not completely sequenced?
- a) Rice
- b) Soybean
- c) Sorghum
- d) Wheat
- According to the Approach Paper to the 12th
 Five Year Plan, the basic objective of the
 12th Plan is
- a) Inclusive growth
- b) Sustainable growth
- c) Faster, more inclusive and sustainable growth
- d) Inclusive and sustainable growth

- To address the problems of sustainable and holistic development of rainfed areas, including appropriate farming and livelihood system approaches, the Government of India has set up the
- a) National Rainfed Area Authority
- National Watershed Development Project for Rainfed Areas
- c) National Mission on Rainfed Areas
- d) Command Area Development and Water Management Authority
- Which of the following sub-schemes are not covered under the Rashtriya Krishi Vikas Yojana?
- a) Extending the Green Revolution to eastern
- b) Development of 60,000 pulses and oilseeds villages in identified watersheds
- c) National Mission on Saffron
- d) National Mission on Bamboo
- The minimum support price for the common variety of paddy announced by the Government of India for the year 2010-11 was
- a) ₹1030
- b) ₹1000
- c) ₹980
- d) ₹950
- According to the Human Development Report 2010 of the United Nations, India's rank in terms of the human development index is
- a) 119
- b) 134
- c) 169
- d) 182

- 9. Which of the following does not apply to SRI method of paddy cultivation?
- a) Reduced water application
- b) Reduced plant density
- c) Increased application of chemical fertilizers
- d) Reduced age of seedlings
- 10. Which organic acid, often used as a preservative, occurs naturally in cranberries, prunes, cinnamon and cloves?
- a) Citric acid
- b) Benzoic acid
- c) Tartaric acid
- d) Lactic acid
- 11. Cotton belongs to the family
- a) Cruciferae
- b) Anacardiaceae
- c) Malvaceae
- d) Solanaceae
- 12. Photoperiodism is
- a) Bending of shoot towards source of light
- Effect of light/dark durations on physiological processes
- Movement of chloroplast in cell in response to light
- d) Effect of light on chlorophyll synthesis
- 13. Ergot disease is caused by which pathogen on which host?
- a) Claviceps purpurea on rve
- b) Puccinia recondita on wheat
- c) Drechlera sorokiniana on wheat
- d) Albugo candida on mustard
- 14. Rocks are the chief sources of parent materials over which soils are developed. Granite, an important rock, is classified as
- a) Igneous rock
- b) Metamorphic rock
- c) Sedimentary rock
- d) Hybrid rock
- 15. Which one of the following is a Kharif crop?
- a) Pearl millet
- b) Lentil
- c) Mustard
- d) Wheat
- 16. The coefficient of variation (C.V.) is calculated by the formula
- a) (Mean/S.D.) × 100
- b) (S.D./Mean) × 100
- c) S.D./Mean
- d) Mean/S.D.
- 17. Which of the following is commonly referred to as muriate of potash?
- a) Potassium nitrate
- b) Potassium chloride
- c) Potassium sulphate
- d) Potassium silicate

- Inbred lines that have same genetic constitution but differ only at one locus are called
- a) Multi lines
- b) Monohybrid
- c) Isogenic lines
- d) Pure lines
- 19. For applying 100 kg of nitrogen, how much urea would one use?
- a) 45 kg
- b) 111 kg
- c) 222 kg
- d) 333 kg
- The devastating impact of plant disease on human suffering and survival was first realized by epidemic of
- a) Brown spot of rice in Bengal
- b) Late blight of potato in USA
- c) Late blight of potato in Europe
- d) Rust of wheat in India
- 21. The species of rice (*Oryza*) other than *O. sativa* that is cultivated is
- a) O. rufipugon
- b) O. longisteminata
- c) O. glaberrima
- d) O. nivara
- 22. The enzyme responsible for the fixation of CO₂ in mesophyll cells of C-4 plants is
- a) Malic enzyme
- b) Phosphoenol pyruvate carboxylase
- c) Phosphoenol pyruvate carboxykinase
- d) RuBP carboxylase
- 23. Which one of the following is a 'Vertisol'?
- a) Black cotton soil
- b) Red sandy loam soil
- c) Sandy loam sodic soil
- d) Submontane (Tarai) soil
- 24. What is the most visible physical characteristic of cells in metaphase?
- a) Elongated chromosomes
- b) Nucleus visible but chromosomes not
- c) Fragile double stranded loose chromosomes
- d) Condensed paired chromosomes on the cell plate
- All weather phenomena like rain, fog and mist occur in
- a) Troposphere
- b) Mesosphere
- c) lonosphere
- d) Ozonosphere

- 26. Which of the following elements is common to all proteins and nucleic acids?
- a) Sulphur
- b) Magnesium
- c) Nitrogen
- d) Phosphorous
- 27. Silt has intermediate characteristics between
- a) Sand and loam
- b) Clay and loam
- c) Loam and gravel
- d) Sand and clay
- 28. Certified seed is produced from
- a) Nucleus seed
- b) Breeder seed
- c) Foundation seed
- d) Truthful seed
- 29. Seedless banana is an
- a) Autotriploid
- b) Autotetraploid
- c) Allotriploid
- d) Allotetraploid
- 30. Which one of the following is used to test the goodness-of-fit of a distribution?
- a) Normal test
- b) t-test
- c) Chi-square test
- d) F-test

PART - II (Subject Paper)

Multiple choice questions (No. 31 to 95). Choose the correct answer (a, b, c or d) and enter your choice in the circle (by shading with a pencil) on the OMR answer sheet as per the instructions given on the answer sheet.

- 31. If A and B are two independent events, then $P(\overline{A} \cap \overline{B})$ is equal to
- a) P(A) P(B)
- b) 1-P(AUB)
- c) [1-P(A)] [1-P(B)]
- d) All the above
- 32. If the letters of the word 'UNIVERSITY' are randomly arranged, the probability that the two is do not come together is
- a) 1/5
- b) 2/5
- c) 3/5
- d) 4/5
- The probability of intersection of two mutually exclusive events is always
- a) Zero
- b) Infinity
- c) One
- d) Depends on individual probability of the events

- 34. If A⊂B, the probability P(A B) is equal to
- a) 0
- b) 1
- c) P(A) P(B)
- d) P(B) P(A)
- 35. If X and Y are two random variables, then
- a) $E\{(XY)^2\} = E(X^2) E(Y^2)$
- b) $E\{(XY)^2\} = E(X^2Y^2)$
- c) $E\{(XY)^2\} \ge E(X^2) E(Y^2)$
- d) $E\{(XY)^2\} \le E(X^2) E(Y^2)$
- A random variable X takes only three values

 1, 0 and 1 such that P(X=0) is ½. Then
 E(X²) is
- a) $\frac{2}{3}$
- b) 1/3
- c) ½
- d) 1
- An approximate relation between mean deviation about mean and standard deviation of a normal distribution is
- a) 5 M.D. = 4 S.D.
- b) 4 M.D. = 5 S.D.
- c) 3 M.D. = 3 S.D.
- d) 3 M.D. = 2 S.D.
- 38. If X~B (n,p) then Y=n-x is
- a) B(2n, p)
- b) B(n,1-p)
- c) B(n, p)
- d) B(2n, 1-p)
- 39. If X_1 , X_2 , ..., X_{20} be a random sample from N_5 (μ , Σ) then 20 (\overline{X} - μ)' Σ^{-1} (\overline{X} - μ) will be
- a) χ_5^2
- b) χ_{20}^2
- c) $\chi_5^2(\delta)$, $\delta = \mu' \Sigma^{-1} \mu$
- d) $\chi_{20}^2(\delta)$, $\delta = \mu' \Sigma^{-1} \mu$
- If X~N(μ, σ²), the maximum probability at the point of inflexion of normal distribution is
- a) $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}}$
- b) $\frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}}$
- c) $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}}$
- d) $\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{1}{2}\sigma^2}$

- 41. Maximum height of the student's t-distribution curve at the point t=0 is
- a) $\frac{1}{B\{\frac{1}{2}, \frac{n+1}{2}\}}$ * "
- b) $\frac{1}{\sqrt{n-1} B\{\frac{1}{2}, \frac{n-1}{2}\}}$
- c) $\frac{1}{\sqrt{n-1} B\{\frac{1}{2}, \frac{n}{2}\}}$
- d) \(\int_1 B \{1/2, \text{n-1/2}\}
- 42. The relation between statistics t and χ^2 is
- a) $t_1^2 = \chi_m^2$
- b) $t_n^2 = \chi_1^2$
- c) $t_{\infty}^2 = \chi_1^2$
- d) $t_1^2 = \chi_1^2$
- 43. If the moment generating function of a distribution is (q+pe^t)ⁿ, the variance of the distribution is
- a) 2n
- b) pq
- c) npq
- d) pg/n
- 44. The moment generating function of a random variable X is,

$$M_x(t) = \frac{2}{5} + \frac{1}{3} e^{2t} + \frac{4}{15} e^{3t}$$

The expected value of X is

- a) 9/5
- b) 11/5
- c) 17/15
- d) 22/15
- 45. If X is a standard normal variate, then ½ X² is a gamma variate with parameters
- a) 1, 1/2
- b) ½,1
- c) ½,½
- d) 1, 1
- 46. Stratified sampling is
- Always more efficient than simple random sampling
- At least equally efficient as simple random sampling
- c) Less efficient than simple random sampling
- d) Can be less, equally or more efficient than simple random sampling

- 47. Discriminant function
- a) Maximizes the difference between populations
- b) Minimizes the difference between populations
- is always a linear function of the components of the random vector under study
- d) None of the above
- 48. In simple random sampling without replacement, the probability that a specified unit is selected at the second draw from a population of size N is
- a) $\frac{1}{N}$
- b) $\frac{1}{N-1}$
- c) $\frac{1}{N-2}$
- d) $\frac{1}{\{N(N-1)\}}$
- 49. Weighted mean gives higher value than the arithmetic mean value if
- a) Larger weights are given to smaller observations and smaller weights are given to larger units
- b) Equal weights are assigned to each observation
- Smaller weights are given to smaller values and larger weights to larger values
- d) Given statement is incorrect
- 50. Maximum likelihood estimators are
- a) Unbiased and consistent
- b) Biased and consistent
- c) Consistent but not necessarily unbiased
- d) Biased and inconsistent
- 51. Let $\{X_n, n\geq 0\}$ be a Markov chain with one step transition probability $p_{ij}^{(n)} = P(X_{m+n} = J/X_m = i), i,j \in S$, then
- a) $p_{ij}^{(2)} = \sum_{K \in S} p_{ik}^{(1)} p_{kj}^{(2)}$
- b) $p_{ij}^{(2)} = \sum_{K \in S} p_{ik}^{(1)} p_{kj}^{(1)}$
- c) $p_{ij}^{(3)} = \sum_{K \in S} p_{ik}^{(1)} p_{kj}^{(1)}$
- d) None of the above

- 52. Which of the following is simple hypothesis?
- A random variable follows normal distribution with mean µ=0
- b) A random variable follows normal distribution with mean $\mu=\mu_0$
- c) A random variable follows а normal distribution with mean $\mu=\mu_0$ and standard deviation $\sigma = \sigma_0$
- d) None of the above
- 53. In case of two stage sampling with unequal first stage units
- No unbiased estimator of population mean exists
- b) Unbiased estimator may not be better than biased estimator
- c) Sample mean is unbiased estimator of population mean
- None of the above
- 54. Stratified sampling is a valuable tool for
- Cases of small differences in strata means
- Getting a small sample from the population
- Higher accuracy
- Highly skewed population
- 55. Given independent random samples X s and Y's (i,j=1, 2,..., n) from two populations having means $\mu_1=\alpha+\beta$ and $\mu_2 = \alpha - \beta$ and common variance $\sigma^2 = 1$, then MLE of α and β are

a)
$$\frac{\overline{x}-\overline{y}}{2n}$$
, $\frac{\overline{x}+\overline{y}}{2n}$

b)
$$\frac{\overline{x}+\overline{y}}{2n}, \frac{\overline{x}-\overline{y}}{2n}$$

c)
$$\frac{\overline{x}+\overline{y}}{2}$$
, $\frac{\overline{x}-\overline{y}}{2}$

d)
$$\frac{\overline{x}-\overline{y}}{2}$$
, $\frac{\overline{x}+\overline{y}}{2}$

- 56. If T is unbiased and consistent estimator of θ , then for estimation of $\sqrt{\theta}$, $\sqrt{1}$ is
- Biased and consistent estimator
- Unbiased and consistent estimator
- Biased and not consistent estimator
- d) Unbiased and not consistent estimator
- 57. Log transform is used when
- a) Mean is proportional to variance
- Mean is proportional to standard deviation
- Square of mean is proportional to standard deviation
- Mean and standard deviations are inversely related

- 58. A population is divided into clusters and it has been found that all items within a cluster are alike: Which of the following sampling procedure would you adopt?
- Simple random sampling
- Cluster sampling
- c) Systematic sampling
- Stratified sampling
- 59. Circular systematic sampling was first used
- W.G. Cochran
- M.H. Hansen b)
- C) D.B. Lahiri
- d) P.C. Mahalanobis
- 60. If T_1 and T_2 are two most efficient estimators with the same variance S2 and the correlation between them is p, the variance of $(T_1+T_2)/2$ is equal to S^2
- a)
- b) ρS^2
- c) $(1+\rho)S^2/4$
- $(1+\rho)S^2/2$
- 61. In estimating the parameters of a linear function, most commonly used method of estimation is
- Maximum likelihood method
- b) Least square method
- Method of minimum chi-square
- Method of moments
- 62. For the distribution,

$$f(x; \theta) = \frac{1}{\theta}; 0 \le x \le \theta$$

a sufficient estimator for θ , based on a sample X₁, X₂, ..., X_n is

$$=) \frac{\sum_{i=1}^{n} X_i}{n}$$

- $\sum_{i=1}^{n} X_i^2$
- c) max (X₁, X₂, ..., X_n)
- d) min $(X_1, X_2, ..., X_n)$
- 63. A test procedure is said to be biased if
- The power of the test for any value of the alternative is not smaller than the level of significance
- The power is zero everywhere b)
- The power is less than the level of significance for some value of the alternative
- The power is one everywhere
- 64. Size of critical region is known as
- Power of the test
- b) Size of type II error
- Critical value of the test statistics C)
- Size of the test

- 65. Neyman-Pearson lemma provides
- a) An unblased test
- b) A most powerful test
- An admissible test c)
- d) Minimax test
- 66. If the sample size is large in Wilcoxon's signed rank test, the statistic T^* is distributed with variance
- a) n(n-1) (2n-1)/24
- b) n(n+1) (2n+1)/24
- c) n(2n+1)/12
- d) n(n-1) (2n+1)/12
- 67. In a (23, 22) experiment with 3 replications, the interaction ABC is confounded. The error degrees of freedom in the analysis of variance will be
- a) 16
- b) 14
- c) 12
- d) 10
- 68. The interaction confounded in the following two blocks of a single replication of a factorial experiment is

Block 1 Block 2

(abc) (ac)

(c) (bc)

1 5 F

(ab)

(a)

(1)

(b)

- AB
- b) AC
- c) BC
- ABC
- 69. Use of randomization in Design Experiment was first introduced at
- a) I.A.S.R.I., New Delhi
- b) I.S.I, Barrackpore
- c) United States Department of Agriculture
- d) Rothamsted Experimental Station
- 70. Transformation to stabilize variance is done to ensure that
- The distribution is known
- b) The computation is easy
- The variance could be estimated
- The variance is independent of population parameters
- 71. What, will be the gene frequency of the recessive gene at equilibrium if the fitness of homozygote relative to heterozygotes is as follows

AΑ Aa aa 0.733 1.00 0.60

- 0.40
- b) 0.50
- C) 0.60
- 0.80

- 72. Covariance between full sibs is
- a) $\frac{1}{4} V_A + \frac{1}{4} V_D$
- b) 1/4 VA + 1/2 VD
- 1/2 VA + 1/4 VD C)
- d) 1/2 VA + 1/2 VD
- 73. Progeny testing is used for
- Judging the breeding value of dams and
- Judging the breeding value of sires and evaluation of sire's merit
- Evaluation of sire's and dam's merit
- Judging the breeding value of sires and evaluation of dam's merit
- 74. If for a binomial distribution b(n,p), mean=4, variance=4/3, the probability P(X≥5) is equal
 - $(2/3)^6$
- b) (2/3)⁵(1/3) c) (1/3)⁶
- $4.(2/3)^6$
- 75. If the ties occur in the Kruskal-Wallis test with usual notations, the correction C for ties
- $\Sigma T / n(n^2-1)$
- b) $\Sigma T/k(n^2-1)$
- C) $\Sigma T/k n(n-1)$
- $\Sigma T / k n^2 (n-1)$
- 76. Under proportional allocation, the size of the sample from each stratum depends on
- Population size
- b) Total sample size
- Size of the stratum
- d) All of the above
- 77. Response to selection
- a) $R = h^2S$
- b) R = hŞ
- C) R = S
- d) R = 2hS
- 78. Indirect selection is better than direct selection when
- $r_A h_y > h_x$
- b) $r_A h_y < h_x$
- c) $h_y > h_x$
- d) $h_x > h_y$
- 79. A test cross is
- Always a backcross
- A backcross only when the parent is homozygous dominant
- A cross between heterozygous
- d) A cross between two individuals which are homozygous recessive

- 80. In the case of tight linkage, which of the following is least efficient?
- a) Method of maximum likelihood
- b) Emerson's method
- c) Product formula
- d) Method of the linear function
- 81. The total number of Latin squares that can be obtained of order 3 are
- a) 16
- b) 12
- c) 9
- d) 3
- 82. Which of the following is false regarding the information matrix (Ç) of a block design?
- a) Its row sum is always zero
- b) It is a non-singular matrix
- c) One of its eigen values is zero
- d) Its column sum is always zero
- 83. Let v, b, r, k, λ be the parameters of a BIB design and T_I, i=1, ..., v be the effect of the i-th treatment. Let the three contrasts of treatment effects be defined as follows with variances V₁, V₂ and V₃, respectively:

$$\frac{T_1-T_2}{\sqrt{2}}, \frac{T_1+T_2-2T_3}{\sqrt{6}}, \frac{T_1+T_2+T_3-3T_4}{\sqrt{12}}$$
 Which of the following is true?

- $V_1 > V_2 > V_3$
- b) $V_1 < V_2 < V_3$
- c) $V_1 = V_2 > V_3$
- d) $V_1 = V_2 = V_3$
- 84. There are two bags. One bag contains 4 red and 5 black balls and the other contains 5 red and 4 black balls. One ball is to be drawn from either of the two bags. The probability of drawing a black ball is
- a) 1
- b) 16/81
- c) 1/2
- d) 10/81
- 85. An urn A contains 5 white and 3 black balls and B contains 4 white and 4 black balls. An urn is selected and a ball is drawn from it, the probability that the ball is white is
- a) 9/8
- b) 9/16
- c) 5/32
- d) 5/16

- 86. The density function of the continuous random variable X is f(x)=1/2, -1<X<1 and zero, otherwise. The variance of |X| is equal to
- a) 1/2
- b) 1/3
- c) 1/4
- d) 1/12
- 87. Given f(x,y) = Kxy, 0<x<1, 0<y<1 is a p.d.f., the covariance between X and Y is
- a) 4/9
- b) 2/3
- c) 1/18
- d) 0
- 88. Let $t_{\omega/2}$ be the $\alpha\%$ value of t (for two tailed test) with n d.f. and F_{α} the upper $\alpha\%$ value of $F_{t,n}$. Then we have
- a) $t_{\alpha}^2 = F_{\alpha/2}$
- b) $t_{\alpha/2}^2 = F_{\alpha}$
- c) $t_{\alpha}^2 = F_{\alpha}$
- d) $t_{\alpha/2}^2 = F_{\alpha/2}$
- 89. In a tri-variate distribution, if all the total correlation coefficients are equal, say 'r', then r_{12.3} is equal to
- a) i
- b) $r/(1+r^2)$
- c) r/(1-r)
- d) r/(1+r)
- 90. Let $S \sim W_p$ (K, Σ), be a p-variate Wishart distribution. For p=1, $W_i(K, \sigma^2)$ follows
- α) χ² distribution
- b) $\sigma^2 \chi_K^2$ distribution
- Snedecor's F-distribution with 1, p degrees of freedom
- d) Non-central χ² distribution
- 91. Let L and P denote the convergence in law and in probability, respectively. Which of the following statements is not correct for the sequence of random variables {X_n}?
- a) $X_n \stackrel{P}{\rightarrow} X \Rightarrow X_n \stackrel{L}{\rightarrow} X$
- b) $X_n \xrightarrow{L} K \Rightarrow X_n \xrightarrow{P} K$, where K is a constant
- c) $X_n \stackrel{P}{\rightarrow} X X_n \stackrel{P}{\rightarrow} Y \Rightarrow P(X=Y) = 1$
- d) $X_n \stackrel{P}{\rightarrow} K \not\Rightarrow X_n \stackrel{L}{\rightarrow} K$, where K is a constant

92. The treatment \times block incidence matrix of a block design is

$$\mathbf{N}_{5\times6} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Which of the following statements is not correct?

- a) The design is proper
- b) The design is non-orthogonal
- The design has varying replications
- d) The design is orthogonal
- 93. The mode of the geometric distribution (1/2)x ·for X=1,2... is
- a) - 1
- b) 0
- C)
- d) Does not exist
- 94. Repeatability sets an upper limit of
- a) Heritability
- b) Genetic correlation
- c) Linkage
- Phenotypic correlation
- 95. Which of the following statements about confidence intervals is incorrect?
- a) If we keep the sample size fixed, the confidence interval gets wider as we increase the confidence coefficient
- b) A confidence interval for a mean always includes in it the sample mean
- c) If the population standard deviation increases, the confidence interval decreases in width
- d) If we keep the confidence coefficient fixed, the confidence interval gets narrower as we increase the sample size

Note: In this paper, there are questions from Q. No. 96 to 130; leave OMR answer sheet blank against Q. No. 96 to 130.

Matching type questions (No. 131 to 140); all questions carry equal marks. Choose the correct answer (a, b, c, d or e) for each sub-question (i, ii, iii, iv and v) and enter your choice in the circle (by shading with a pencil) on the OMR answer sheet as per the instructions given on the answer sheet.

131. If the exponential distribution is	given as
$f(x) = e^{-x}, \ 0 \le x \le \infty$	•
i) Mean of the distribution	a) 4
ii) Variance of the distribution	b) 2
iii) Third moment of the distribution	c) 1
iv) Pearson's constant β	d) 1
v) Standard deviation of the distribution	e) 1
132. The characteristic function of	
i) Chi-square distribution	a) (1-it) ⁻ⁿ
ii) Gamma distribution (α =1)	b) e ^{-1/2} t ²
iii) Standard normal distribution	c) (1-2it) ⁻⁹ / ₂
iv) Cauchy distribution (α =1, β =1)	d) $e^{it-\{t\}}$

v) Poisson distribution (parameter, $\lambda=1$)

133.

- i) Cluster sampling
- ii) Systematic sampling
- iii) Horvitz-Thompson
- estimator
- iv) Non-response
- d) Frame of sampling units is not available

a) Unbiased estimates

b) Biased estimates

c) Easy to apply

- v) Hansen-Hurwitz technique in mail survey
- e) Negative estimator of variance

134.

- i) Method of moment
- ii) Least square theory
- iii) Sequential probability ratio

v) Testing of independence of

iv) Testing of hypothesis

attributes

- a) J. Neyman
- b) Karl Pearson c) R.A. Fisher
- d) A. Wald
- e) C.F. Gauss

135.

- intraclass correlation for a population is
- ii) Intraclass correlation for a population is 0.28
- iii) In two stage sampling c) Cluster sampling every first stage unit is selected
- iv) Per unit cost of collecting information on auxiliary variable is more than per unit cost of collecting information on study variable
- v) Correlation coefficient e) between study variable and auxiliary variable is 0.6, coefficient of variation (C.V.) of study variable is 4.2, C.V. of auxiliary variable is

- a) Simple random sampling should be preferred over two phase sampling
- b) Stratified sampling
- should be preferred over simple random sampling
- d) Ratio estimator will be more efficient than simple mean for estimating population mean from sample selected through simple random sampling without replacement
- Simple random sampling should be preferred over cluster sampling

136. In statistical genetics

- i) Correlation between father and son a) 1/2
- ii) Correlation between daughter and daughter rDD
- iii) Correlation between son and daughter r_{SD}
- c) 3/4
- iv) Correlation between son and son
- v) Correlation between first cousin
- e) 1/8

137. Design of Experiments

- i) The linear combination -3T1-T2+T3+3T4 of four treatments is a
- a) (K-1)
- ii) Completely randomized design b) Contrast yields maximum degrees of freedom for
- iii) Among K treatments, the c) Error number of orthogonal contrasts
- can at most be iv) If A is a fixed effect having p
 - d) Systematic designs
- v) The experimental designs not involving any randomization process are called

levels, then $\sum_{i} \alpha_{i}$ is equal to

e) Zero

- i) T²-statistic
- a) Mahalanobis
- ii) D²-statistic '
- b) Fisher
- iii) Discriminant function
- c) Centroid method
- iv) Cluster analysis
- d) Hotelling

v) Factor analysis

e) Grouping

139.

- i) Testing equality of two means a) χ^2 test from normal populations with unknown variance and small sample size
- ii) Testing equality of several means
- b) F-test
- iii) Testing equality of two variances
- c) Analysis of variance
- iv) Testing equality of several variances
- d) t-test
- v) Testing independence of attributes
- e) Bartlett test

140.

- i) Run test
- a) Goodness of fit
- ii) Kolmogorov-Smirnov test (one sample)
- b) Analysis of one way classification
- iii) Mood's test
- c) Central tendency
- iv) Kruskal-Wallis test
- d) Randomness of observations
- v) Wilcoxon signed rank test
- e) Equality of measures of dispersion

Short questions (No. 141 to 146); each question carries FIVE marks. Write answers, including computation / mathematical calculations if any, in the space provided for each question on the question paper itself.

141. Let X_1 and X_2 have the joint p.d.f.

 $f(x_1, x_2) = 2, 0 < x_1 < x_2 < 1$

= 0, otherwise

/ Show that the conditional variance of X_1 given $X_2=x_2$ is $x^2/12$

142. Let $X_1, X_2, ..., X_n$ denote a random sample from a distribution with p.d.f. $f(x;\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \ \theta > 0$

= 0, otherwise

Obtain a sufficient statistics for θ .

143. Show that in estimating mean for random sampling from a normal population, sample mean is more efficient than sample median.

144. In a large random mating population, show that both gene frequencies and the genotypic frequencies remain constant from generation to generation in the absence of migration, mutation and selection.

145. Construct a BIBD with v=9, b=12, r=4, k=3 and λ=1 using MOLS and give its complementary design along with its parameters.

146. For a data, following results were obtained

 $r_{12} = \frac{3}{5}$ $r_{23} = \frac{4}{5}$ $r_{13} = -\frac{1}{2}$

interpret the result.

. .