

INDIAN INSTITUTE OF SCIENCE BANGALORE - 560012

ENTRANCE TEST FOR ADMISSIONS - 2002

Program Integrated Ph.D

Entrance Paper Mathematical Sciences

Day & Date SUNDAY 28TH APRIL 2002

Time 1.30 P.M. TO 4.30 P.M.

MATHEMATICAL SCIENCES

General Instructions

- The question paper is in two parts: Part A and Part B
- Part A carries 30 marks and Part B carries 70 marks.
- There is no negative marking
- All answers must be written in the answer book and not on the question paper

Notations: The set of natural numbers, integers, rational numbers, real numbers and complex numbers are denoted by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} respectively.

Part A

Part A consists of 30 multiple choice questions each carrying mark

Answer all questions from Part A.

Four possible answers are provided for each question—'ick √) the correct answer against A, B, C or D on page 3 of the answer book.

If $(a,b) \neq (0,0)$ then the real polynomial x + ax + b must have

- A. only real zeros.
- B. only non-real complex zeros.
- C. a real zero.
- D. a non-real complex zero.

For any integer $n \geq 3$, the value of $\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{2n}$ is always

- Α
- B.
- C. "
- D $\frac{2}{3n}$
- 3. Let ρ be a non-trivial relation on a set X If is symmetric and antisymmthen ρ is
 - A reflexive
 - B. transitive
 - C. an equivalence relation.
 - D. the diagonal relation (i.e $py \Leftrightarrow x = y$)

Let $f: \mathbb{Z} = \mathbb{R}$ be defined by $f(x) = x^3 - 3x - 1$ Then f is

- A not a function
- B surjective (onto) function
 un injective (one-to-one) function
 function but neither injectiv nor surjectiv

Suppose $f \mathbb{R} \mathbb{R}$ is defined by $\frac{.2001}{}$ Then

A does not hav inverse over whole of \mathbb{R}

	В. 1	has no inverse outside a finite open subset of \mathbb{R} .
		has no inverse outside a finite closed subset of $\mathbb R$
		has inverse over the whole of \mathbb{R} .
/		set $\{5, 15, 25, 35\}$ is a group under multiplication modulo 40 The identity ent of this group is
	A .	5.
	В.	15
	C. :	25
	D . 3	35
	Orde	r of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ is
	Α. :	3.
	В. 4	4.
	C. '	7.
	D . 3	12.
/		$_n$ be the additive group of integers modulo n . The number of homomorphisms \mathbb{Z}_n to itself is
	Α. ().
	В. 3	l.
	C. 7	n.
	D. 7	n^2
X	9. The r	number of non-isomorphic abelian group(s) of order 15 is
	A. .	1.
	В. 2	2

10. Let R be a commutative ring. An element $x \in R$ is said to be nilpotent if $x^n = 0$ for some positive integer n. If x and y in R are such that x and x + y are nilpotents then y must be

A. the additive identity of R.

C. 3D. 4

B. the multiplicative identity of R

- C. x^m , for some integer m.
- D. nilpotent.
- 1 The characteristic polynomial of the matrix $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ is
 - A. $x(x^2+1)$.
 - B. $x(x-1)^2$
 - C. $x(x+1)^2$
 - D. $x(x^2-1)$
- 12. Let v=(1,1) and $w=(1,-1)\in\mathbb{R}^2$ Then a vector $u=(a,b)\in\mathbb{R}^2$ is in the \mathbb{R} -linear span of v and w
 - A. only when a = b.
 - B. always.
 - C. for exactly one value of (a, b).
 - D. for at most finitely many values of (a, b)
 - 13. The dimension of the vector space $\{(x, y, z, w) \in \mathbb{R}^4$ $w, x + z = y = z + w\}$ is
 - A 0.
 - B.
 - C. 2
 - D.
 - 14. Let A be a 3×3 real matrix. Suppose $A^4 = 0$. Then A has
 - A. exactly two distinct real eigenvalues.
 - B. exactly one non-zero real eigenvalue.
 - C. exactly 3 distinct real eigenvalues.
 - D. no non-zero real eigenvalue.
 - Let a, b, c, d be real numbers and let $f: \mathbb{C} \to \mathbb{C}$ be the map defined by f(x+iy) (ax+by)+i(cx+dy). Then f is linear over \mathbb{C} if and only if
 - A. a = d and b = c.
 - B. a = d and b = -c
 - C a = -d and b = c

- 16 Let C_1 and C_2 be two distinct ellipses in the plane. If C_1 and C_2 have a common tangent at a common point P then the number of distinct common points of C_1 and C_2 must be
 - A. 1.
 - B. 1 or 2.
 - C. 1, 2 or 3.
 - D. 1, 2, 3 or 4.
- 17. Let $P = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}$, $Q = \{(x, y, z) \in \mathbb{R}^3 : y = 0\}$, $R = \{(x, y, z) \in \mathbb{R}^3 : x + y = 1\}$ be three planes in \mathbb{R}^3 . Let $l = P \cap R$ and $m = Q \cap R$. Then l and $m = Q \cap R$.
 - A. are two skew lines.
 - B. are two parallel lines.
 - C. intersect at the origin.
 - D. are perpendicular to each other
- 18. Let S be unit sphere with center (0,0,1] in \mathbb{R}^3 and P be the plane $\mathbb{S} = \mathbb{R}^3$. Then the equation of $S \cap P$ is
 - A. $x^2 + y^2 = \frac{3}{4}$, $z = \frac{1}{2}$
 - B. $x^2 + y^2 1$, $z = \frac{1}{2}$
 - C. $x^2 + y^2 2x = 1$, $z \frac{1}{2}$
 - D. $x^2 + y^2$ $2y = \frac{3}{4}$, $z = \frac{1}{2}$
- 19. The three lines $ax + a^2y$ $bx + b^2y$ $cx + c^2y$ in \mathbb{R}^2 are concurrent if and only if
 - A. a = b = c
 - B. two of a, b, c are equal
 - C. a. b. c are all distinct.
 - D. $a = c^2$ and $b = c^3$.
- / 20. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \max\{1 |x| 0\}$ is differentiable
 - A. at all points.
 - B. at all except one point.
 - C. at all except three points.
 - D. nowhere.

- /21 Let $f:[0,1] \to \mathbb{R}$ be a continuous function with f(0) = f(1). If f is differentiable on (0,1) and the derivative f' is continuous on (0,1) then f' is
 - A. strictly positive in (0,1).
 - B. strictly negative in (0, 1).
 - C. identically zero in (0,1).
 - D. zero at some point in (0,1)
 - 22. The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for
 - A. all p > 0.
 - B. for only p = 1.
 - C. for all p > 1.
 - D. for all integer values of p.
 - 23. Let $\mathbf{V} \mathbb{R}^3 \to \mathbb{R}^3$ be the vector field defined by

$$\mathbf{V}(x_1, x_2, x_3) := (x_1^2 + x_2^2, x_1x_2 + x_2x_3, x_2^2 + x_1x_3)$$

- The divergence of V is
 - A. $4x_1 + x_3$.
 - B. 0.
 - C. $x_1^2 + x_2^2 + 2x_1x_3$
 - D. $(2x_1, x_1 + x_3, x_1)$
- 24 A unit normal vector to the curve $\mathbf{C} := \{(x, x^2) \mid x \in \mathbb{R}\}$ in the plane \mathbb{R}^2 at the point (0,0) is given by
 - A. (0,-1).
 - $B_{-1}(-1,0)$.
 - C. $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$
 - D. (1,0).
 - 25. The number of zeros of the function $f(x) = \sin x \cos x$ in $(0, n\pi)$ is
 - A. n + 1.
 - B. 2n 1
 - C. 2n.
 - D. 2n + 1

- 26. The function $f:[-1,1] \to \mathbb{R}$ defined by $f(x) = 1 x^2$ has
 - A. no local maxima or minima in (-1,1)
 - B. has exactly one local maximum and two local minima in (-1,1)
 - C. has exactly one local maximum in (-1,1).
 - D. has exactly one local minimum in (-1,1).

27. If
$$f(x,y) = x^7 + 100x^5y^2 + 200xy^6 + 10y^7$$
 then $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}$ is =

- A. $42x^7 + 4200x^5y^2 + 8400xy^6 + 420y^7$
- B. $42x^7 + 500x^5y^2 + 200xy^6 + 10y^7$.
- C. $42x^7 + 1000x^5y^2 + 1200xy^6 + 420y^7$
- D. $7x^7 + 700x^5y^2 + 1400xy^6 + 70y^7$.
- 28. A solution of the differential equation $\frac{dy}{dx} = y + 1$ is
 - A. $y = e^x 1$.
 - B. $y = e^x + 1$.
 - C. $y = e^x + x$
 - D. $y = e^{x-1}$.
- 29. The differential equation $\frac{d^2y}{d^2x} + 4\frac{dy}{dx} + 4y = 0$ has general solution of the form
 - A. $A\cos 2x + B\sin 2x$
 - B. $Ae^{-2x} + Bxe^{-2x}$.
 - $C. Ae^{2x} + Bxe^{2x}.$
 - D. $Ae^{2x} + Be^{-2x}$.
- 30. The iteration $x_{n+1} = x_n^2 2$, $x_n \ge 0$ for $n \ge 1$ will converge to the solution x = 2 of the equation $x^2 x 2 = 0$ if and only if x_1 is
 - A. close to 2 from the left.
 - B. close to 2 from the right.
 - C. equal to 2.
 - D. equal to $\sqrt{2}$.

Part B

- Part B comprises 24 questions. Each question carries 5 marks
- Answer any 14 full questions only.
- Only the first 14 answered questions will be evaluated
- Answer should be to the point.
- 1. Let a, b be real numbers and let $f, g: \mathbb{R} \to \mathbb{R}$ be the functions defined by

$$f(x) = ax + b$$
 and $g(x) = x^2$,

respectively. Show that $f \circ g$ $g \circ f$ if and only if (a, b) = (0, 0), (0, 1) or (1, 0)

2. For an integer $n \geq 4$, compute the $n \times n$ determinant

3. For all $n \in \mathbb{N}$ and for all positive real numbers x, y, show that

$$\left(1+\frac{x}{y}\right) + \left(1+\frac{y}{x}\right) \geq 2^{n+1}$$

4. Let ρ be a relation on a non-empty set X. For $Y \subseteq X$, let

$$N(Y) := \{x \in X \mid \text{ there exists } y \in Y \text{ such that } y \rho x\}$$

Show that ρ is reflexive if and only if $Y \subseteq N(Y)$ for all $Y \subseteq X$

- 5. Let $f: \mathbb{Z} \to \mathbb{R}$ be a function. If f(n) = f(n+11) = f(n+18) for all $n \in \mathbb{Z}$ then show that f is a constant function.
- 6. Let '+' and '.' be the operations on the set C[0,1] of continuous real valued functions on [0,1], defined by

$$(f+g)(x) f(x) + g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x),$$

for all $x \in [0, 1]$. Show the following.

(a)
$$(C[0,1], +, \cdot)$$
 is a ring.

(b) $(C[0,1],+,\cdot)$ has a divisor of zero.

[3 marks]

[2 marks]

7. If

$$x_2 + x_3$$

$$x_{98} + x_{99} + x_{100}$$
 0.
 $x_{99} + x_{100} + x_1$ 0.
 $x_{100} + x_1 + x_2$ 0.

then show that $x_1 - x_2$

 $=x_{99}=x_{100}=0.$

- 8. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by f(x, y) := (x, x + y, y).
 - (a) Show that f is linear.

[2 marks]

(b) Find the range and the kernel of f.

[3 marks]

- 9. Let P, Q and R be three non-collinear points in the plane. Show that every point X in the plane can be uniquely written as $X = a_1P + a_2Q + a_3R$, where a_1 , a_2 , a_3 are real numbers with $a_1 + a_2 + a_3 = 1$.
- 10. Find the volume of the largest (right circular) cone that can be inscribed in a sphe of radius R > 0.

Let $f, g: \mathbb{R} \to \mathbb{R}$ be two continuous functions. Show that the function $h: \mathbb{R} \to \mathbb{R}$ defined by

$$h(x) \max\{f(x \mid g(x))\} \text{ for } x \in \mathbb{R}.$$

is continuous.

- 12 Let $f:[a,b] \to \mathbb{R}$ be a continuous function on the closed interval $[a,b] = \mathbb{R}$ with f(a) = f(b). Show that there exists $c \in \left[a, \frac{a+b}{2}\right]$ such that $f\left(c + \frac{b-a}{2}\right) = f(c)$
- 1 Let $f: [0,1] \to \mathbb{R}$ be a continuous function. Suppose that $f(r) = r^3 + 99r + 100$ for every rational number $r \in [0,1]$. Prove that $f(x) = \frac{3}{2} + 99x + 100$ for all $x \in [0,1]$.
- 14. Does the series $\sum_{n=1}^{\infty} \frac{(n!)^2 5^n}{(2n)!}$ converge? Justify your answer.
- 15. If a sequence a_n , $n \in \mathbb{N}$ of real numbers is monotone decreasing and the series $\sum_{n=0}^{\infty} a_n$ is convergent, then show that the sequence na_n $n \in \mathbb{N}$ converges to 0
- 16. Show that the function $f: \mathbb{R} \to \mathbb{R}$. $f(x) := x^3 + 2x + \epsilon$ is strictly increasing and compute the derivative $(f^{-1})'(1)$ of the inverse function f^{-1} at the point 1 = f(-1).
- 17. Let $f: \mathbb{R} \to \mathbb{R}$ be a function which is 3-times differentiable in a neighbourhood of 0 and f(0) = 0. Show that the function $g: \mathbb{R} \to \mathbb{R}$, defined by

$$g(x) = \begin{cases} f(x) & \text{if } x \neq 0 \\ f'(0) & \text{if } x \end{cases}$$

is differentiable at 0 and $g'(0) = \frac{1}{2}f''(0)$

18. For $n \in \mathbb{N}$, let

$$a_n := \int_0^{\pi/2} \sin^n t \, dt$$

Show the following.

(a)
$$(n+1)a_{n+1} = na_{n-1}$$
 for $n \ge 1$ [2 marks]

(b)
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$$
 [3 marks]

19. Let $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ be the map defined by

$$f(v, w) := v \times w$$
 (the vector product of v and w)

Show that f is surjective (onto)

- 20. Let $f:(0,\infty)\to\mathbb{R}$ be the function defined by $f(x)=x^x$. Find local maxima and minima of f.
- 21 Find out all the local maxima, local minima and points of inflection of the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 3x^5 5x^3 + 15$.
- 22. Show that any solution y of the differential equation

$$\frac{dy}{dx} = \sin y$$

on an interval [0, a] statisfies

$$|y(x) - y(0)| \le x$$
 for all $x \in [0, a]$

23. Describe the Euler numerical scheme and the Runge-Kutta method of order 2 for solving the differential equation

$$\frac{dy}{dx} \qquad f(y) \quad x \in \mathbb{R}$$
$$y(0) = y_0,$$

where $f: \mathbb{R} \to \mathbb{R}$ is differentiable and the derivative f' is continuous on \mathbb{R} . Explain also why the Runge-Kutta method is preferred to the Euler method.

24. Compute the area of the region

$$R:=\left\{(x,y)\in\mathbb{R}^2 \mid \max\{|x|,|y|\}\leq 1 \mid 4xy\leq 1\right\}$$