

INDIAN INSTITUTE OF SCIENCE BANGALORE - 560012

ENTRANCE TEST FOR ADMISSIONS - 2003

Program Integrated Ph.D

Entrance Paper Mathematical Sciences

Day & Date SUNDAY 27th APRIL 2003

Time 1.30 P.M. TO 4.30 P.M.

General Instructions

- This question paper has two parts : Part A and Part B.
- Part A Carries 30 marks and Part B carries 70 marks.
- All answers must be written in the answer-book and not on the question paper.

Notation

The set of natural numbers, integers, rational numbers, real numbers and complex numbers are denoted by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} respectively.

Integrated Ph. D. / Mathematical Sciences

Part A

- Part A consists of 30 multiple choice questions, each carrying 1 mark.
- Answer all questions.
- Four possible answers are provided for each question. Tick $(\sqrt{})$ against correct answer, namely, A, B, C or D on the Page 3 of the answer book.
- 1. The number of reflexive relations on the set $\{1, 2, ..., n\}$ is
 - $2^{n(n-2)}$. (A)
 - $2^{n(n-1)}$. **(B)**
 - 2^{n^2} . (C)
 - $2^{n(n+1)}$ (D)
- 2. For any two natural numbers n and k, the number of all k-tuples $(a_1, \ldots, a_k) \in \mathbb{N}^k$ with $1 \leq a_1 \leq a_2 \leq \cdots \leq a_k \leq n$ is
 - $\binom{n}{k}$. (A)
 - **(B)**
 - $\binom{n+k}{k}.$ $\binom{n+k-1}{k}.$ (C)
 - $\binom{n+k+1}{k}$. (D)
- 3. The probability that a hand of 5 playing cards contains at least two aces is
 - $\frac{\binom{4}{2}\cdot\binom{48}{3}}{\binom{52}{5}}$. (A) $\binom{4}{2} + \binom{48}{3}$ $\binom{52}{5}$ **(B)** $\frac{\binom{4}{2} \cdot \left[\binom{48}{3} + \binom{48}{2} + \binom{48}{1}\right]}{\binom{52}{5}}.$ (C) $\frac{\binom{4}{2}\binom{48}{3}+\binom{4}{3}\binom{48}{2}+\binom{4}{4}\binom{48}{1}}{\binom{52}{5}}.$ (D)
- 4. Let a, b, c, d be rational numbers with $ad bc \neq 0$. Then the function $f : \mathbb{R} \setminus \mathbb{Q} \to \mathbb{R}$ defined by $f(x) := \frac{ax+b}{cx+d}$ is t e
 - (A) onto but not one-one.
 - **(B)** one-one but not onto.
 - (C) neither one-one nor onto.
 - (D) both one-one and onto.

- 5. The supremum of the set $\left\{\frac{n^2}{2^n} \mid n \in \mathbb{N}\right\}$ 31113.
 - (A) is $\frac{9}{8}$.
 - (B) is 1
 - (C) is 0.
 - (D) does not exist.

6. Let $n \in \mathbb{N}$. Then the complex number $\left(\frac{1+i}{\sqrt{2}}\right)^n$ is purely imaginary if and only if

- (A) $n \equiv 0 \pmod{4}$.
- (B) $n \equiv 1 \pmod{4}$.
- (C) $n \equiv 2 \pmod{4}$.
- (D) $n \equiv 3 \pmod{4}$.

(For $a, b, m \in \mathbb{Z}, m > 1$, $a \equiv b \pmod{m}$ means that m divides a - b

- 7. The equation $\frac{1}{1+x^2} = \sqrt{x}$, $x \ge 0$ has
 - (A) no real solution.
 - (B) exactly one real solution.
 - (C) exactly 3 real solutions. exactly 5 real solutions.
- 8. Let $p(X) := X^n + a_1 X^{n-1} + \dots + a_{n-1} X + a_n$ be a real polynomial of degree $n \ge 1$. If n is even and a_n is negative, then
 - (A) f has at least one positive and one negative real zero.
 - (B) all real zeros of f are positive.
 - (C) all real zeros of f are negative.f has no real zeros.
- 9. The points of intersection of the two plane curves defined by the equations $y^2 = a^2$ and $(y bx)^2 = c^2$, $a, b, c \in \mathbb{R}$, $b \neq 0$ are vertices of
 - (A) an equilateral triangle.
 - (B) a square.
 - (C) a reactangle.
 - a paralleogram.

- 10. Let V be the \mathbb{R} -vector space of all functions $\mathbb{R} \to \mathbb{R}$ and let W be the \mathbb{R} -subspace of V generated by the functions $\sin t$, $\sin(t+1)$, $\sin(t+2)$. Then the dimension of W is
 - (A) 0
 - **(B)** 1
 - (C) 2
 - (D) 3
- 11. Let $n \in \mathbb{N}$, $n \ge 3$ and let $x_k := (kn + 1, kn + 2, ..., kn + n)$, k = 0, 1, ..., n 1. Then the maximal linearly independent subsequence of the sequence $x_0, x_1, ..., x_{n-1} \in \mathbb{R}^n$ has the length
 - (A) 1. (B) 2. (C) n-1(D) n
- 12. For real numbers a, b, c, the following linear system of equations

$$x + y + z = 1$$

$$ax + by + cz = 1$$

$$a^{2}x + b^{2}y + c^{2}z = 1$$

has a unique solution if and only if

- (A) b = c and $b \neq a$.
- (B) a = b and $a \neq c$.
- (C) a = c and $a \neq b$.
- (D) $a \neq b$, $b \neq c$ and $a \neq c$
- 13. For $r, s \in \mathbb{N}$, the signature of the permutation

$$\sigma := \begin{pmatrix} 1 & 2 & r-1 & r & r+1 & r+2 & r+s \\ s+1 & s+2 & s+r-1 & s+r & 1 & 2 & s \end{pmatrix}$$

is

- (A) $(-1)^{rs}$.
- (B) $(-1)^{r+s}$
- (C) $(-1)^r$.
- (D) $(-1)^{s}$.

14. The number of subgroups in the cyclic group of order 360 is

- (A) 6.
- (B) 8.
- (C) 12.
- (D) 24.
- 15. Let *m* be an odd integer > 6. Then the multiplicative inverse of 2 in the ring $(\mathbb{Z}_m, +_m, \cdot_m)$ (where $+_m$ and \cdot_m denote the addition and multiplication modulo *m* respectively.)
 - (A) does not exist.
 - (B) is $\frac{m-1}{2}$.
 - (C) is $\frac{m+1}{2}$.
 - (D) is m 2.
- 16. The power set $\mathfrak{P}(X)$ of a set X with the binary operations symmetric difference $^1 \Delta$ and intersection \cap form a ring (the symmetric difference is the addition and the intersection is the multiplication) called the power set ring of the set X. If the set X has at least 3 elements, then in the power set ring $(\mathfrak{P}(X), \Delta, \cap)$ of X, every element is
 - (A) a unit.
 - (B) idempotent.
 - (C) nilpotent.
 - (D) a non-zero divisor.
- 17. The polynomial $f(X) := X^3 + aX + 1$ in $\mathbb{Z}_3[X]$ is
 - (A) irreducible in $\mathbb{Z}_3[X]$ if and only if a = -1.
 - (B) irreducible in $\mathbb{Z}_3[X]$ if and only if a = 0.
 - (C) irreducible in $\mathbb{Z}_3[X]$ if and only if a = 1.
 - (D) always reducible in $\mathbb{Z}_3[X]$.
- 18. Let x be a rational number which is not an integer. Then the sequence $a_n(x) := nx [nx]$, $n \in \mathbb{N}$, (for any real number y, the bracket [y] denote the largest integer $\leq y$) has
 - (A) infinitely many limit points.
 - (B) at least 2, but finitely many limit points.
 - (C) exactly one limit point.
 - (D) no limit point.

¹For $A, B \in \mathfrak{P}(X)$, the subset $A \triangle B := (A \setminus B) \cup (B \setminus A)$ is called the symmetric difference of A and B

19. The sequence $\sqrt{2}$, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2}\sqrt{2}}$, ...,

- (A) is a divergent sequence.
- (B) is convergent and its limit is $\leq \sqrt{2}$.
- (C) is convergent and its limit is $\geq 3/2$.
- (D) is convergent and its limit is ≥ 4 .

20. Let $f: (0, \infty) \to \mathbb{R}$ be the function defined by $f(x) := \frac{e^x}{x^x}$. Then the limit $\lim_{x \to \infty} f(x)$

- (A) does not exist.
- (B) exists and is 0.
- (C) exists and is 1.
- (D) exists and is e.

21. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n}$$
 is

- (A) absolutely convergent.
- (B) conditionally convergent
- (C) oscillatory.
- (D) divergent.

22. Let $f : [-1, 1] \rightarrow \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x, & \text{if } x \in \mathbb{Q}, x > 0, \\ -x, & \text{if } x \in \mathbb{Q}, x \le 0, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Then f is

- (A) neither left continuous nor right continuous at 0.
- (B) left continuous but not right continuous at 0.
- (C) right continuous but not left continuous at 0.
- (D) continuous at 0.
- 23. If tangent at the origin to the curve defined by the equation $y = ax + bx^2 + cx^3$ passes through the point (a, b), then

计目前通知 法保留证据

(A) $b = -a^2$. (B) $b = a^2$. (C) b = -a. (D) b = a. 24. Let x(t) and y(t) be two non-constant differentiable real valued functions on \mathbb{R} such that

$$\frac{d x(t)}{dt} = -y(t)$$
 and $\frac{d y(t)}{dt} = x(t)$

Then the plane curve $t \mapsto (x(t), y(t))$ is

.

- (A) a constant curve.
- (B) a straight line.
- (C) a circle.
- (D) a parabola.

25. The derivative of the function $\mathbb{R}^+ \to \mathbb{R}$, $x \mapsto x^x$ is

- (A) $(\ln x + 1) x^x$
- $(\mathbf{B}) \qquad (\ln x + x) \, x^x$
- (C) $\left(\ln x + \frac{1}{x}\right) x^x$
- (D) $x \cdot x^{x-1}$.

26. Let α, β be two real numbers and $\beta > 0$. The function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} 0, & \text{if } x \le 0, \\ x^{\alpha} \sin(1/x^{\beta}), & \text{if } x > 0. \end{cases}$$

is differentiable at 0 if and only if

- (A) $\alpha = \beta$
- (B) $\alpha > \beta$
- (C) $\alpha < \beta$
- (D) $\alpha > 1$
- 27. Let $f : \mathbb{R} \to \mathbb{R}$ be a function which is differentiable at $a \in \mathbb{R}$ and $f(a) \neq 0$ Then the function $g : \mathbb{R} \to \mathbb{R}$ defined by g(x) := |f(x)| is
 - (A) differentiable at a and g'(a) = f'(a).
 - (B) differentiable at a and g'(a) = -f'(a).
 - (C) differentiable at a and $g'(a) = sign(f(a)) \cdot f'(a)$
 - (D) not differentiable at a.

28. The function $f(x) := ax^2 + bx + c$, $a, b, c \in \mathbb{R}$, $a \neq 0$ with $\lim_{x \to \infty} f(x) = \infty$ has

- (A) a unique point of minimum in \mathbb{R} .
- (B) a unique point of maximum in \mathbb{R} .
- (C) exactly two points of minimum in \mathbb{R} .
- (D) exactly two points of maximum in \mathbb{R}

29. Let $F : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ be the vector field defined by

$$F(x):=\frac{x}{\|x\|},$$

where $x = (x_1, x_2, x_3) \in \mathbb{R}^3 \setminus \{0\}$ and $||x|| := \sqrt{x_1^2 + x_2^2 + x_3^2}$. Then the divergence div F(x) of F(x) is

- (A) ||x||.
- (B) 1/||x||.
- (C) $2 \cdot ||x||$.
- (D) 2/||x||.
- 30. For a partial differentiable vector field $v = (v_1, v_2, v_3) : U \to \mathbb{R}^3$ defined on an open subset $U \subseteq \mathbb{R}^3$, the vector product $\nabla \times v$ of ∇ and v is called the rotation field of v, where $\nabla := \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}\right)$. For a two times continuously partially differentiable function
 - $f: U \to \mathbb{R}$, the rotation field of the gradient field grad f of f is
 - (A) $\operatorname{grad} f$.
 - (B) $2 \cdot \operatorname{grad} f$
 - (C) (0, 0, 0).
 - (D) (1, 1, 1).

Part B

- Part B consists of 24 questions, each carrying 5 marks.
- Answer any 14 questions.
- Only the first 14 answered questions will be evaluated.
- 1. For any natural number $n \ge 1$ prove the formula $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$
- 2. For every real number b > 1, show that there exists a nautral number n_0 such that $b^n > n$ for all natural numbers $n \in \mathbb{N}$ with $n \ge n_0$.
- 3. Let \leq denote the product order on $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$, i.e. for two tuples (x_1, x_2) , $(y_1, y_2) \in \mathbb{N}^2$, $(x_1, x_2) \leq (y_1, y_2)$ if and only if $x_1 \leq y_1$ and $x_2 \leq y_2$. Show that every subset X of (\mathbb{N}^2, \leq) has only finitely many minimal elements.

(Hint: One may assume that if $x \in X$ and $x \leq y$, $y \in \mathbb{N}^2$, then $y \in X$.)

4. Let A be an uncountable subset of the set of all positive real numbers. For every real number r, show that there are finitely many distinct real numbers $a_1 \ldots, a_n \in A$ such that

$$a_1+\cdots+a_n\geq r$$
.

5. Let $a_1, \ldots a_n$ be distinct real numbers and let

$$F(x) := \frac{1}{x - a_1} + \frac{1}{x - a_2} + \dots + \frac{1}{x - a_n}$$

For any real number c, show that F(x) = c has exactly n - 1 or n real solutions according as c = 0 or $c \neq 0$.

- 6. Let $n \ge 1$ and let A be a $n \times n$ real matrix of rank n 1. Then show that the adjoint matrix AdjA of A has rank 1.
- 7. Let $n \ge 1$ and let A be a $n \times n$ matrix with integer entries and let $a \in \mathbb{Q} \setminus \mathbb{Z}$. Show that the matrix $a\mathbf{I}_n + \mathbf{A}$ is invertible.
- 8. For every divisor d of 24 = 4!, find the number $\alpha(d)$ of elements of order d in the permutation group \mathfrak{S}_4 on 4 symbols.
- 9. Let G be a group, e be the identity element in G and let $x \in G$ be an element of order 2. Show that $H := \{e, x\}$ is a subgroup of G. Further, show that H is normal if and only if x belongs to the center $Z(G) := \{y \in G \mid yz = zy \text{ for all } z \in G\}$.
- 10. Let a and b be real numbers and let $(a_n)_{n \in \mathbb{N}}$ be the sequence recursively defined by

$$a_0 := a, a_1 := b, a_n := \frac{1}{2}(a_{n-1} + a_{n-2})$$
 for $n \ge 2$.

Is the sequence $(a_n)_{n \in \mathbb{N}}$ convergent? If the answer is yes, then find its limit.

(Hint: Note that $a_{k+1} - a_k = -\frac{1}{2}(a_k - a_{k-1})$ for all $k \ge 1$.)

11. Let $h_n := \sum_{k=1}^{n-1} h_k$, $n \in \mathbb{N}$, $n \ge 1$. Show that the series $\sum_{n=1}^{\infty} \frac{h_n}{2^n}$ is convergent and that

$$\sum_{n=1}^{\infty} \frac{h_n}{2^n} = 2 \cdot \sum_{n=1}^{\infty} \frac{1}{n2^n} \, .$$

12. Let $a \in \mathbb{R}$, a > 0 and let the sequences $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ are defined recursively by

$$x_0 := a, x_{n+1} := \sqrt{x_n}, y_n := 2^n (x_n - 1) \text{ for all } n \in \mathbb{N}$$

Find $\lim_{n\to\infty} y_n$

13. Show that the series $\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$ is convergent and find its sum.

(**Hint**: First prove the formula $\prod_{n=1}^{N} \left(1 - \frac{1}{n^2}\right) = \frac{1}{2} \left(1 + \frac{1}{N}\right)$.)

- 14. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Show that f must be a multiplication by a fixed real number a. i.e. there exists $a \in \mathbb{R}$ such that f(x) = ax for all $x \in \mathbb{R}$. (Hint : First prove that $f(x) = f(1) \cdot x$ for all $x \in \mathbb{Q}$.)
- 15. For $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be the function defined by $f_n(x) := \frac{nx}{1 + |nx|}$. Show that all the functions f_n , $n \in \mathbb{N}$ are continuous. For which real numbers x, is the function $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) := \lim_{n \to \infty} f_n(x)$ defined ? and for which x is it continuous ?
- 16. A function $f : \mathbb{R} \to \mathbb{R}$ is called even if f(-x) = f(x) for all $x \in \mathbb{R}$ and is called odd if f(-x) = -f(x) for all $x \in \mathbb{R}$. Show that
 - (a) The derivative of a differentiable even (respectively odd) function is odd (respectively even). [3 marks]
 - (b) The polynomial function $f(x) := a_0 + a_1x + \dots + a_nx^n$, $a_0, \dots, a_n \in \mathbb{R}$, is even (respectively odd) if and only if $a_k = 0$ for all odd (respectively even) indices k. [2 marks]
- 17. Let $\tanh : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$\tanh(x) := \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Show that

- (a) tanh is strictly monotone increasing. [1 mark]
- (b) tanh maps \mathbb{R} bijectively onto the open interval (-1, 1). $[1\frac{1}{2} \text{ marks}]$
- (c) The inverse function $\tanh^{-1}: (-1, 1) \to \mathbb{R}$ is differentiable. $[1\frac{1}{2} \text{ marks}]$

[1 mark]

(d) Find the derivative of \tanh^{-1} .

18. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} 0, & \text{if } x \le 0, \\ e^{-1/x^2}, & \text{if } x > 0. \end{cases}$$

Show that f is 3-times continuously differentiable and compute the k-derivative $f^{(k)}$ of f for all k = 1, 2, 3.

19. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. For any two real numbers a, b with a < b, show that there exists a real number $c \in (a, b)$ such that

$$\left|\frac{f(b) - f(a)}{b - a} - f'(a)\right| \le |f'(c) - f'(a)|.$$

(Hint : Use mean value theorem.)

- 20. Let $n \ge 1$ be a natural number and let $f: (0, \infty) \to \mathbb{R}$ be the function defined by $f(x) = x^n e^{-x}$. Determine the maxima and minima of the function f.
- 21. Let $f, g: [a, b] \to \mathbb{R}$ be two continuous functions on the closed interval $[a, b] \subseteq \mathbb{R}$ such that $\int_a^b f(x)dx = \int_a^b g(x)dx$. Show that there exists a real number $x_0 \in [a, b]$ such that $f(x_0) = g(x_0)$.
- 22. Let t be a positive real number. Compute the area bounded by the hyperbola $y = \sqrt{x^2 1}$ and the two lines $y = (\tanh t) \cdot x$, $y = -(\tanh t) \cdot x$ passing through the points $(\cosh t, \sinh t)$, $(\cosh t, -\sinh t)$ respectively.

(Hint: Use the formula $\int_{a}^{b} \sqrt{x^{2}-1} \, dx = \frac{1}{2} \left[-\cosh^{-1}(x) + x\sqrt{x^{2}-1} \right]_{a}^{b}$.)

23. Show that the function $F: (\mathbb{R}^3 \setminus \{0\}) \times \mathbb{R} \to \mathbb{R}$ defined by

$$F(x, t) := \frac{\cos (||x|| - ct)}{||x||}$$

where $x = (x_1, x_2, x_3) \in \mathbb{R}^3 \setminus \{0\}, t \in \mathbb{R}$ and $||x|| := \sqrt{x_1^2 + x_2^2 + x_3^2}$ is a solution of the differential equation

$$\left(\Delta - \frac{1}{c^2}\frac{\partial}{\partial t^2}\right)F(x,t) = 0$$

where $\Delta := \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$ is the Laplace operator in dimension 3

24. Let a be a positive real number and let $f, g : (-a, a) \to \mathbb{R}$ be two continuous functions. Suppose that f is an odd function and g is an even function, i.e.

$$f(-x) = -f(x)$$
, and $g(-x) = g(x)$ for all $x \in (-a, a)$.

Show that the differential equation $y'' + f(x) \cdot y' + g(x) \cdot y = 0$ has two linearly independent solutions one of which is even and the other is odd.