

INDIAN INSTITUTE OF SCIENCE BANGALORE - 560012

ENTRANCE TEST FOR ADMISSIONS - 2006

Program: Integrated Ph.D

Entrance Paper: Mathematical Sciences

Paper Code: MS

Day & Date SUNDAY, 30th APRIL 2006

Time 2.00 P.M. TO 5.00 P.M.

Integrated Ph.D. (Mathematical Sciences)

General Instructions

- (1) The question paper has 50 multiple choice questions.
- (2) Four possible answers are provided for each question and only one of these is correct.
- (3) Marking scheme: Each correct answer will be awarded 2 marks, but 0.5 marks will be deducted for each incorrect answer.
- (4) Answers are to be marked in the OMR sheet provided.
- (5) For each question darken the appropriate bubble to indicate your answer.
- (6) Use only HB pencils for filling in the bubbles.
- (7) Mark only one bubble per question. If you mark more than one bubble, your response will be evaluated as incorrect.
- (8) If you wish to change your answer, please erase the existing mark completely before marking the other bubble.

Notations: The set of natural numbers, integers, rational numbers, real numbers and complex numbers are denoted by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} respectively.

Integrated Ph.D./Mathematical Sciences

- 1. The number of positive roots of $x^6 + 9x^5 + 2x^3 x^2 2$ is
 - (A) 0.
 - (B) 1.
 - (C) 3.
 - (D) 5.
- 2. Let f(x) be a polynomial with real coefficients and let f'(x) denote its derivative. Then, between two consecutive roots of f'(x) = 0, there
 - (A) never is a root of f(x) = 0.
 - (B) always is a root of f(x) = 0.
 - (C) is at most one root of f(x) = 0.
 - (D) may be any number of roots of f(x) = 0.
- 3. Let $\alpha, \beta, \gamma, \delta$ be roots of the quartic $x^4 + px^3 + qx^2 + rx + s$ where p, q, r and s are real. Then $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ equals
 - (A) $p^2 + 4q$.
 - (B) $p^2 4q$.
 - (C) $p^2 + 2q$.
 - (D) $p^2 2q$.
- 4. Let z = x + iy be a complex number. Then |z| = |x| |y| holds if and only if
 - (A) z = 0.
 - (B) z is real.
 - (C) z is purely imaginary.
 - (D) z is real or purely imaginary.

5. Let $P = re^{i\theta}$, Q = r and R = P + Q. If O is the origin, then OPQR is a square if and only if

(A)
$$r = 0$$
.

(B)
$$r = 1$$
.

(C)
$$\theta = \pm \frac{\pi}{2}$$
.

(D)
$$\theta = \pm \pi$$
.

- 6. The determinant $\begin{vmatrix} a+b & c+d & e & 1 \\ b+c & d+a & f & 1 \\ c+d & a+b & g & 1 \\ d+a & b+c & h & 1 \end{vmatrix}$ evaluates to
 - (A) 0.
 - (B) 1.

(C)
$$(a+b)(c+d) + e + f + g + h$$
.

(D)
$$(a+b+c+d)(e+f+g+h)$$
.

- 7. Let $M_2(\mathbb{C})$ be the vector space of 2×2 matrices over \mathbb{C} .
 - P: The determinant function from $M_2(\mathbb{C})$ to \mathbb{C} is a linear transformation.
 - Q: The determinant function is a linear function of each row of the matrix when the other row is held fixed.
 - (A) Both P and Q are true.
 - (B) P is true, but Q is false.
 - (C) P is false, but Q is true.
 - (D) Both P and Q are false.
- 8. Let x, y and z be positive real numbers such that xyz = 1. Then

(A)
$$x + y + z \ge 3$$
 and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 3$.

(B)
$$x + y + z \ge 3$$
 and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le 3$.

(C)
$$x + y + z \le 3$$
 and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 3$.

(D)
$$x + y + z \le 3$$
 and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le 3$.

9. Let F_n be a finite set with n elements. The number of one-to-one maps from F_5 to F_7 is (A) 35. (B) $\binom{7}{5}$. (C) 5! (D) $5!\binom{7}{5}$. 10. Consider the functions $f, g: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 3n + 2 and $g(n) = n^2 - 5$. (A) Neither f nor g is a one-to-one function. (B) The function f is one-to-one, but not g. (C) The function g is one-to-one, but not f. (D) Both f and g are one-to-one functions. 11. The set of integers under subtraction is not a group because (A) subtraction is not associative. (B) there is no identity element for subtraction. (C) every element does not have an inverse. (D) subtraction is not commutative. 12. Consider $\mathbb{R} \setminus \{0\}$ as a multiplicative subgroup of $\mathbb{C} \setminus \{0\}$. Let $f : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ given by $f(z) = z^2$ and g the restriction of f to $\mathbb{R} \setminus \{0\}$. Then (A) neither f nor g is a surjective (i.e. onto) homomorphism. (B) f is a surjective homomorphism but g is not. (C) g is a surjective homomorphism but f is not. (D) both f and g are surjective homomorphisms. 13. The number of distinct homomorphisms from $\mathbb{Z}/5\mathbb{Z}$ to $\mathbb{Z}/7\mathbb{Z}$ is (A) 0.(B) 1.

(C) 7.(D) 5.

- 14. Let S_3 denote the group of permutations on the set $\{1,2,3\}$ and $G=S_3\times S_3$. The set $H:=\{(\sigma,\tau)\mid \sigma(1)=\tau(1)\}$ is
 - (A) not a subgroup of G.
 - (B) a non-abelian subgroup of G
 - (C) an abelian subgroup of G.
 - (D) a normal subgroup of G.
- 15. The set {0, 2, 4} under addition and multiplication modulo 6 is
 - (A) not a ring with unity (identity).
 - (B) a ring with 0 as unity (identity).
 - (C) a ring with 2 as unity (identity).
 - (D) a ring with 4 as unity (identity).
- 16. Suppose a and b are elements in R, a commutative ring with unity. Then the equation ax = b
 - (A) always has exactly one solution.
 - (B) has a solution only if a is a unit.
 - (C) has more than one solution only if b = 0.
 - (D) may have more than one solution.
- 17. For what values of r is the vector (3, 2, r, 0) in \mathbb{R}^4 contained in the subspace generated by (1, 0, 0, 0), (0, 1, 2, 0) and (0, 1, 1, 1)?
 - (A) For no value of r.
 - (B) For exactly one value of r.
 - (C) For more than one but finitely many values of r.
 - (D) For infinitely many values of r.

- 18. Denote by M a real 3×3 real matrix such that $M \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $M \begin{pmatrix} 4 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/4 \\ 1/5 \\ 0 \end{pmatrix}$, then $M \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$ is
 - (A) $\begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$
 - (B) $\begin{pmatrix} 1/6 \\ 0 \\ 0 \end{pmatrix}$
 - (C) $\begin{pmatrix} 2 + \frac{1}{4} \\ 0 \\ 0 \end{pmatrix}$
 - (D) not determined uniquely.
- 19. Suppose u, v and w are linearly dependent vectors and w is not expressible as a linear combination of u and v. Then which of the following statements is true?
 - (A) Such a situation is not possible.
 - (B) Vector w has to be zero.
 - (C) One of u or v has to be zero.
 - (D) Vector u is a multiple of v.
- 20. In a 13 dimensional vector space, the dimension of intersection of two 6 dimensional subspaces is
 - (A) at least 1.
 - (B) at most 1.
 - (C) at least 6.
 - (D) at most 6.

21. Which of the options is true about the following statement?

Let $T:\mathbb{R}^5 \to \mathbb{R}^7$ be a linear transformation whose kernel is of dimension 2 and whose image is a line.

- (A) There does not exist any such linear transformation.
- (B) There is exactly one such linear transformation.
- (C) There are finitely many (but more than one) such linear transformations.
- (D) There are infinitely many such linear transformations.

22. For maps from \mathbb{R}^2 to \mathbb{R}^3 , match the following

- P. f(x,y) = (x, x y, y)
- 1. Not a linear transformation.
- $Q. \quad g(x,y) = (x,x,x)$
- 2. Rank two linear transformation.
- R. h(x,y) = (1, x + y, x y) 3. Rank one linear transformation.
- (A) P-3, Q-2, R-1.
- (B) P-3, Q-1, R-2.
- (C) P-2, Q-1, R-3.
- (D) P-2, Q-3, R-1.

23. Let $T: \mathbb{R}^5 \to \mathbb{R}^5$ be a linear transformation. Then T has

- (A) no real eigenvalues.
- (B) at least one real eigenvalue.
- (C) at most one real eigenvalue.
- (D) exactly one real eigenvalue.

24. A non-zero linear transformation T on \mathbb{R}

- (A) may not have any eigenvector.
- (B) has exactly one eigenvector.
- (C) has more than one (but finitely many eigenvectors).
- (D) has infinitely many eigenvectors.

- 25. Let X and Y denote spheres in \mathbb{R}^3 each with radius 2 and center at (0,1,0) and (0,-1,0) respectively. Then $X \cap Y =$
 - (A) $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + z^2 = 1\}.$
 - (B) $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = 0\}.$
 - (C) $\{(x, y, z) \in \mathbb{R}^3 \mid y^2 + z^2 = 1, \ x = 0\}.$
 - (D) $\{(x, y, z) \in \mathbb{R}^3 \mid z^2 + x^2 = 1, y = 0\}.$
- 26. The set of points in the Euclidean plane satisfying the quadratic $x^2 + y^2 + x + y + 1 = 0$
 - (A) an empty set.
 - (B) a pair of straight lines.
 - (C) a circle.
 - (D) an ellipse.
- 27. Let V, W and X be three vectors in \mathbb{R}^3 , and let \cdot and \times denote the usual dot product and cross product respectively. The product $X \times (Y \cdot Z)$

. 13/15

- (A) is a vector in \mathbb{R}^3 .
- (B) gives the volume of the parallelepiped spanned by X, Y and Z.
- (C) always equals 0.
- (D) cannot be defined.
- 28. The equation of the tangent plane to the surface $x^2 3xy + 2y^2 + z^2 = 1$ at the point (1,1,1) is given by
 - (A) x + y + 2z = 4.
 - (B) x y 2z = -2.
 - (C) x 2y 2z = -2.
 - (D) x + y + z = 3.

29. Let X, Y and Z be vectors in \mathbb{R}^3 such that

$$X \times Y = 2i - 2j + 5k, \qquad Y = i + 3j.$$

The volume of the parallelepiped in \mathbb{R}^3 spanned by X,Y and Z is

- (A) 4.
- (B) 3.
- (C) 2.
- (D) 1.
- 30. Let x and y be any two real numbers satisfying 0 < x < 1 < y. Then, the limit

$$\lim_{n \to \infty} \left(x + \frac{y}{n} \right)^n$$

is equal to

- (A) $e^{y/x}$.
- (B) $e^{x/y}$.
- (C) 0.
- (D) e.
- 31. The limit $\lim_{n\to\infty} (n^5 + 4n^3)^{1/5} n$ equals
 - (A) 4.
 - (B) 4/5.
 - (C) 0.
 - (D) 5/4.
- 32. We are given a convergent series $\sum_{n=1}^{\infty} a_n$, where $a_n \geq 0$ for each n. Which of the following correctly describes the behaviour of the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n^p}, \quad 1 \le p \le 2 ?$$

- (A) Diverges when p = 1, but converges for $p \in (1, 2]$.
- (B) Converges for every $p \in [1, 2]$.
- (C) Diverges when $p \in [1, 5/4]$, but converges for $p \in (5/4, 2]$.
- (D) Diverges for every \in [1, 2].

33. Define the function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} ax^2 + b, & \text{if } x \le 1, \\ cx + 1, & \text{if } x > 1. \end{cases}$$

We want to find appropriate values of a, b and c such that

- I) f is increasing in the interval $(0, \infty)$; and
- II) f' is continuous on \mathbb{R} .

Which of the following is the correct statement about the values of (a, b, c) for which both conditions (I) and (II) are satisfied?

- (A) (3,2,6) is the only possible value.
- (B) There are finitely many values of (a, b, c).
- (C) (-2, -3, -4) is one of the values.
- (D) There are infinitely many values of (a, b, c).

34. The limit

$$\lim_{x \to 0} \frac{3^x - 2^x}{4^x - 3^x}$$

equals

- (A) 3/4.
- (B) $\log_{4/3}(3/2)$.
- (C) $\log_e(3/2)$.
- (D) 2/3.

35. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \min(3x^3 + x, |x|)$ is

- (A) continuous on \mathbb{R} , but not differentiable at x = 0.
- (B) differentiable on \mathbb{R} , but f' is discontinuous at x = 0.
- (C) differentiable on \mathbb{R} , and f' is continuous on \mathbb{R} .
- (D) differentiable to any order on \mathbb{R} .

36. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and define

$$g(x) = \int_0^{x^3 + 3x^2} f(t)dt.$$

The value of g'(0)

- (A) equals 0.
- (B) equals 1.
- (C) is a positive real number.
- (D) cannot be determined without knowing the value of f(0).

37. Let f(x) be a cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$, where $a, b, c, d \in \mathbb{R}$ and $a \neq 0$. Suppose that the graph of f intersects the x-axis at exactly two distinct points and that $\lim_{x\to\infty} f(x) = -\infty$. Then:

- (A) f has a unique point of global minimum in \mathbb{R} .
- (B) f has a unique point of global maximum in \mathbb{R} .
- (C) f has exactly two points of local maximum in \mathbb{R} .
- (D) f has exactly one point of local maximum in \mathbb{R} .

38. For any $x \in \mathbb{R}$, let [x] denote the greatest integer smaller than or equal to x. The value of the integral

$$\int_{1/2}^{1} [1/x^2] dx$$

equals

- (A) $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} \frac{1}{2}$.
- (B) $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}}$.
- (C) $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} + \frac{1}{2}$.
- (D) $\frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}}$.

39. The value of the integral

$$\int_{0}^{1} \int_{\sqrt{y}}^{1} 3\sqrt{x^3 + 1} \, dx dy$$

is

- (A) $2^{5/2}/3$.
- (B) $\frac{2}{3}(2^{3/2}-1)$.
- (C) $\frac{2}{3}(\sqrt{2}-1)$.
- (D) $2(\sqrt{2}-1)$.
- 40. Define

$$F(x,y) = \int_0^{x^2+y^2} \cos^2(t+x)dt, \quad (x,y) \in \mathbb{R}^2.$$

 $\frac{\partial F}{\partial x}(0,y)$ equals

- (A) 0.
- (B) $\frac{\cos(y^2)}{2}$.
- (C) $\frac{\cos(y^2)}{2} + \cos^2(y^2)$.
- (D) $\cos^2(y^2) + \cos(y^2)$.
- 41. The vector field $V(x,y) = ye^{2x}i + e^{2x}j$
 - (A) is a conservative vector field on \mathbb{R}^2 having the potential function $\phi(x,y) = ye^{2x}/2$.
 - (B) is a conservative vector field on \mathbb{R}^2 .
 - (C) has the property that the work done by V along every path is 0.
 - (D) is not a conservative vector field.
- 42. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be twice continuously differentiable at each point in \mathbb{R}^3 . Then $\operatorname{curl}[\operatorname{grad}(f)]$
 - (A) is a vector field that is orthogonal to the level surfaces of f.
 - (B) is a conservative vector field.
 - (C) equals 0 (i.e. the zero vector) at each point in \mathbb{R}^3 .
 - (D) is a non-constant vector field on \mathbb{R}^3 .

43. Let \triangle be the triangle in \mathbb{R}^2 with vertices (0,0),(1,0) and (0,1), and let $F(x,y) = -xyi + \sqrt{y^4 + 1}j$. The line integral of the vector field F:

$$\oint_{\partial riangle} m{F} \cdot dm{r},$$

taking the anti-clockwise orientation on $\partial \triangle$ (here, $\partial \triangle$ denotes the boundary of \triangle), is

- (A) -1/6.
- (B) 0.
- (C) 1/6.
- (D) 6.
- 44. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined as $f(x, y, z) = x^2 + 2xy + 5y^2 z^4 1$. The unit vector u which gives the maximum value for the directional derivative $D_{\boldsymbol{u}}f$ at the point (1,0,1) is
 - (A) u = (1, 0, 0).
 - (B) u = (0, 0, 1).
 - (C) $u = -\frac{1}{\sqrt{2}}(1,0,1)$.
 - (D) $u = \frac{1}{\sqrt{6}}(1, 1, -2).$
- 45. Let G be the tetrahedron in \mathbb{R}^3 with vertices (0,0,0),(1,0,0),(0,1,0) and (0,0,1). The outward flux of the vector field $V(x,y,z) = 2z\cos(xy)i (z^2+1)j + yz^2\sin(xy)k$ across the boundary of G is
 - (A) -1/6.
 - (B) 0.
 - (C) 1/6.
 - (D) 6.
- 46. The general solution of the first-order ODE $\,$

$$xy' + x^2y - y = 0$$

is (in all choices below, C denotes a constant)

- (A) $y(x) = xe^{-x^2/2} + C$.
- (B) $y(x) = e^{x^2/2}(x+C)$.
- (C) $y(x) = e^{x^2/2} Cx$.
- (D) $y(x) = Cxe^{-x^2/2}$.

47. The general solution of the first-order ODE

$$xy' + 2x^2y - xe^{-x^2} = 0$$

is (in all choices below C denotes a constant)

- (A) $y(x) = e^{x^2}(x+C)$.
- (B) $y(x) = e^{-x^2}(x+C)$.
- (C) $y(x) = xe^{x^2} + C$.
- (D) y(x) = x + C.

48. Consider the functions f(x) = x|x| and $g(x) = x^2$. Then

- (A) $\{f,g\}$ is a linearly independent pair of functions on $(-\infty,0)$.
- (B) $\{f,g\}$ is a linearly independent pair of functions on $(0,\infty)$.
- (C) $\{f,g\}$ is a linearly dependent pair of functions on \mathbb{R} .
- (D) $\{f,g\}$ is a linearly independent pair of functions on \mathbb{R} .

49. Which of the following pair of functions is NOT a linearly independent pair of solutions for the second-order ODE y'' + 9y = 0?

- (A) $(\sin 3x, \cos 3x)$
- (B) $(3\cos 3x 2\sin 3x, \sin 3x)$
- (C) $(\cos^3 x 3\sin^2 x \cos x, \cos 3x)$
- (D) $(\cos 3x 3\sin 3x, \sin 3x 3\cos 3x)$

50. Consider the second-order ODE

$$x^2y'' + Axy' + y = 0.$$

This equation

- (A) admits, for each A > 0, a linearly independent pair of solutions consisting of trigonometric functions.
- (B) admits, for some values of A > 0, a linearly independent pair of solutions consisting of powers of x.
- (C) does not admit any linearly independent pair of solutions consisting of powers of x for any A > 0.
- (D) has no solutions.

 $\star\star\star$ End of question paper $\star\star\star$