Instructions

- 1. This question paper has fifty multiple choice questions.
- 2. Four possible answers are provided for each question and only one of these is correct.
- 3. Marking scheme: Each correct answer will be awarded **2** marks, but **0.5** marks will be **deducted** for each incorrect answer.
- 4. Answers are to be marked in the OMR sheet provided.
- 5. For each question darken the appropriate bubble to indicate your answer.
- 6. Use only HB pencils for bubbling answers.
- 7. Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- 8. If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- 9. Let \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.

Integrated Ph. D./ Mathematical Sciences

- 1. Let $f: [0,1] \to [0,1]$ be continuous and f(0) = 0, f(1) = 1. Then, f is necessarily
 - (A) injective, but not surjective.
 - (B) surjective, but not injective.
 - (C) bijective.
 - (D) surjective.
- 2. Let $f: (-1,1) \to \mathbb{R}$ be a function such that $|f(x)| \le |x|^2$. Then,
 - (A) f need not be differentiable at the origin.
 - (B) f'(0) > 0.
 - (C) f'(0) = 0.
 - (D) f'(0) < 0.
- 3. Let $\alpha_1, \dots, \alpha_{2007}$ be the roots of the equation $1 + x^{2007} = 0$. Then, the value of the product $(1 + \alpha_1) \cdots (1 + \alpha_{2007})$ is
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) 2007.
- 4. Let q > 1 be a positive integer. Then, the set $\{(\cos \frac{\pi}{q} + i \sin \frac{\pi}{q})^n : n = 0, 1, 2, \cdots\}$, where $i = \sqrt{-1}$, is
 - (A) a singleton.
 - (B) a finite set, but not a singleton.
 - (C) a countably infinite set.
 - (D) dense on the unit circle.

- 5. Consider the second order ordinary differential equation y'' + by' + cy = 0, where b, c are real constants. You are given that $y = \exp(2x)$ is a solution. Then,
 - (A) $b^2 + 4c < 0$.
 - (B) $b^2 + 4c \ge 0$.
 - (C) $b^2 4c < 0$.
 - (D) $b^2 4c \ge 0$.
- 6. Consider the second order ordinary differential equation y'' + 3y' + 2y = 0. Then, $\lim_{n\to\infty} y(t)$ is
 - (A) a non-zero finite number.
 - (B) 0.
 - (C) $-\infty$.
 - (D) ∞ .
- 7. Consider the system x' = -y, y' = x with x(0) = 1, y(0) = 1. Then,
 - (A) $y = \sin t + \cos t$.
 - (B) $y = -\sin t + \cos t$.
 - (C) $y = t \exp t + \exp t$.
 - (D) y is not any of the above.
- 8. Consider the equation $x^{2007} 1 + x^{-2007} = 0$. Let *m* be the number of distinct complex, non-real roots and *n* be the number of distinct real roots of the above equation. Then, m n is
 - (A) 0.
 - (B) 2006.
 - (C) 2007.
 - (D) 4014.

9. Let a, b, c be non-zero real numbers. Then, the minimum value of

$$a^{2} + b^{2} + c^{2} + \frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}$$

is

- (A) 0.
- (B) 6.
- (C) 3^2 .
- (D) 6^2 .

10. Consider the set $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 + 2x + 4y + 6 = 0\}$. Then, A is

- (A) an infinite set.
- (B) a finite set with more than one element.
- (C) a singleton.
- (D) an empty set.

11. Consider the sequence $\{l_n\}_{n\in\mathbb{N}}$ with $l_n = \frac{1}{n+1} + \cdots + \frac{1}{2n}$. This sequence

- (A) is increasing and bounded.
- (B) increases to ∞ .
- (C) decreases to 0.
- (D) decreases to a positive number.
- 12. Let p be a polynomial of degree 2n + 1 with real coefficients. We say that a real number a is a fixed point of p if p(a) = a. Then, p has
 - (A) exactly 2n + 1 fixed points.
 - (B) at least one fixed point.
 - (C) at most one fixed point.
 - (D) n fixed points.

- 13. Let $f(x) = e^{(e^{-x})}$ and define g(x) = f(x+1) f(x). Then, as $x \to \infty$, the function g(x) converges to
 - (A) 0.
 - (B) 1.
 - (C) e.
 - (D) e^e .
- 14. Let A, B be 2×2 matrices with real entries, and assume that AB BA = cI for some constant c, where I is the identity matrix. Then, c is
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) 4.
- 15. Let f and g be any two non-constant Riemann-integrable functions on an interval [a, b]. Then, $\int_{a}^{b} f(x)g(x)dx$

(A) is
$$(\int_{a}^{b} f(x)dx)(\int_{a}^{b} g(x)dx)$$
.
(B) is $f(a)(\int_{a}^{b} g(x)dx)$.
(C) is $f(a)(\int_{a}^{b} g(x)dx) + g(a)(\int_{a}^{b} f(x)dx)$.

- (D) does not have a representation as above.
- 16. Let $A = \begin{bmatrix} a & \pi \\ \pi & 1/49 \end{bmatrix}$, where *a* is a real number. Then, *A* is invertible
 - (A) for all $a \neq 22^2$.
 - (B) for all $a \neq 180^2 \times 49$.
 - (C) for all $a \neq 22^2$ or $a \neq 180^2 \times 49$.
 - (D) for all rational a.

- 17. Let A be an $n \times n$ matrix with real entries and suppose that the system Ax = 0 has the unique solution x = 0. Then, the mapping $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by Tx = Ax is
 - (A) a bijection.
 - (B) one-one, but not onto.
 - (C) onto, but not one-one.
 - (D) neither one-one nor onto.
- 18. If A is an $n \times n$ matrix with real or complex entries and $A^3 = 0$, then
 - (A) $(I + A)^3 = 0.$
 - (B) I + A is invertible.
 - (C) I + A is not invertible.
 - (D) necessarily A = 0.
- 19. Let A be an $n \times n$ invertible matrix with integer entries and assume that A^{-1} also has only integer entries. Then,
 - (A) $\det A = n$.
 - (B) det $A = \pm 1$.
 - (C) det $A = n^2$.
 - (D) det A will depend on the entries of A and A^{-1} .

20. The eigenvalues of
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 are

- (A) $\cos\theta$ and $\sin\theta$.
- (B) $\tan \theta$ and $\cot \theta$.
- (C) $e^{i\theta}$ and $e^{-i\theta}$.
- (D) 1 and 2.

21. Let
$$A(t) = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix}$$
, where $a(t)$, $b(t)$, $c(t)$ and $d(t)$ are differentiable on \mathbb{R} . Then,
 $\frac{d}{dt} \det A(t)$ is
(A) $\det \begin{bmatrix} a'(t) & b'(t) \\ c'(t) & d'(t) \end{bmatrix}$.
(B) $\det \begin{bmatrix} a(t) & b'(t) \\ c(t) & d'(t) \end{bmatrix}$.
(C) $\det \begin{bmatrix} a'(t) & b(t) \\ c'(t) & d(t) \end{bmatrix}$.
(D) $\det \begin{bmatrix} a'(t) & b'(t) \\ c(t) & d(t) \end{bmatrix} + \det \begin{bmatrix} a(t) & b(t) \\ c'(t) & d'(t) \end{bmatrix}$.

22. For n > 1, let f(n) be the number of $n \times n$ real matrices A such that $A^2 + I = 0$. Then,

- (A) $f \equiv 0$. (B) f(n) = 0 if and only if n is even. (C) f(n) = 0 if and only if n is odd. (D) $f \equiv \infty$.
- 23. Let the sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers converge to a non zero real number a and let $y_n = a x_n$. Then $\max_{n\in\mathbb{N}}\{x_n, y_n\}$ converges to
 - (A) a always.
 - (B) 0 always.
 - (C) $\max\{a, 0\}.$
 - (D) $\min\{a, 0\}.$
- 24. Let $f(x) = \sum_{k=0}^{n} c_k x^k$ be a polynomial with real coefficients, where $c_0 > 0$ and $c_n < 0$. Then,
 - (A) f(x) > 0 for all x > 0.
 - (B) f(x) < 0 for all x < 0.
 - (C) f(x) = 0 for some x > 0.
 - (D) f(x) = 0 for infinitely many values of x.

- 25. Which of the following is an equivalence relation in \mathbb{R} :
 - (A) $x \leq y$ for all $x, y \in \mathbb{R}$.
 - (B) x y is an irrational number.
 - (C) x y is divisible by 3.
 - (D) x y is a perfect square.
- 26. Let X be an empty set. A relation \sim on X is called *circular* if whenever $x \sim y$ and $y \sim z$, then $z \sim x$; and *triangular* if whenever $x \sim y$ and $x \sim z$, then $y \sim z$. An equivalence relation is
 - (A) circular and triangular.
 - (B) neither circular nor triangular.
 - (C) circular, but not triangular.
 - (D) triangular, but not circular.
- 27. Let f be a real differentiable function defined on [a, b], where the derivative is an increasing function and $x_0 \in [a, b]$. Then,
 - (A) f is always strictly increasing.
 - (B) f is always strictly decreasing.
 - (C) $f(x) \le f(x_0) + (x x_0)f'(x_0)$ for all $x \in [a, b]$.
 - (D) $f(x) \ge f(x_0) + (x x_0)f'(x_0)$ for all $x \in [a, b]$.
- 28. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous odd function and define $g(x) = \int_{0}^{3x \sin 2x} f(t) dt$. Then, the value of g'(0) is
 - (A) 1.
 - (B) 0.
 - (C) 3.
 - (D) cannot be determined from the given data.

29. Let x, y and z be any 3 positive real numbers. Then, always:

(A)
$$\sqrt{xyz} \le \frac{x+y+z}{3}$$
.
(B) $\sqrt{xyz} \ge \frac{x+y+z}{3}$.
(C) $\sqrt{xyz} \le \left(\frac{x+y+z}{3}\right)^{3/2}$.
(D) $\sqrt{xyz} \ge \left(\frac{x+y+z}{3}\right)^{3/2}$.

- 30. Consider the two functions $f(x) = |x| \sin x$ and $g(x) = x \sin x$. Then, $\{f, g\}$ is
 - (A) linearly independent on $(-\infty, 0)$.
 - (B) linearly independent on $(0, \infty)$.
 - (C) linearly dependent on \mathbb{R} .
 - (D) linearly independent on \mathbb{R} .
- 31. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Assume that T(x) = 0 for all x such that |x| = 1. Then,
 - (A) $T \equiv 0$.
 - (B) T is onto.
 - (C) dimension of kernel of T is 1.
 - (D) dimension of range of T is 1.
- 32. Let A be a matrix of order 2 with real entries such that AB = BA for all matrices B of order 2. Then,
 - (A) A is always the zero matrix.
 - (B) $A = \lambda I$ for some $\lambda \in \mathbb{R}$.
 - (C) A is always invertible.
 - (D) A is never invertible.

- 33. Consider the space $V = \{(x_1 + x_2 + x_3, x_1 + x_2, x_3) : (x_1, x_2, x_3) \in \mathbb{R}^3\}$. Then, the dimension of V is
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) 3.
- 34. Let n > 2 and for $1 \le j \le n$, define a_j to be the vector in \mathbb{R}^n with j^{th} entry 0 and the remaining entries 1. Then, $\{a_1, \dots, a_n\}$
 - (A) is a linearly dependent set.
 - (B) is an orthogonal system.
 - (C) spans a proper subspace of \mathbb{R}^n .
 - (D) is a basis for \mathbb{R}^n .
- 35. Let V be a 25 dimensional vector space. Then, the dimension of the intersection of two 13 dimensional subspaces of V
 - (A) is always 1.
 - (B) can be any integer between (and including) 0 and 13.
 - (C) can be any integer between (and including) 1 and 13.
 - (D) is none of the above.
- 36. Let S_4 denote the symmetry group of 4 letters and \mathbb{R}^* be the multiplicative group of nonzero real numbers. If $f: S_4 \to \mathbb{R}^*$ is a homomorphism, then the set $\{x \in S_4 : f(x) = 1\}$ has
 - (A) at least 12 elements.
 - (B) exactly 24 elements.
 - (C) at most 12 elements.
 - (D) exactly 4 elements.

- 37. For positive integers n and m, where n, m > 1, suppose that $n\mathbb{Z}$ and $m\mathbb{Z}$ are isomorphic as rings. Then,
 - (A) there is no restriction on n and m.
 - (B) n = m.
 - (C) g.c.d(n,m) = 1.
 - (D) necessarily n|m or m|n, but not both.
- 38. Let \mathbb{Z}_n denote the additive group of integers modulo n. Suppose $\mathbb{Z}_n \times \mathbb{Z}_m \simeq \mathbb{Z}_{mn}$. Then,
 - (A) g.c.d(n,m) = 1.
 - (B) n = m = 1.
 - (C) n|m.
 - (D) mn = m + n.
- 39. Let S_n be the symmetry group of n letters and assume that it is abelian. Then,
 - (A) n = 1 or n = 2.
 - (B) n is a prime greater than 2.
 - (C) n is an even number greater than 2.
 - (D) n is an odd number greater than 2.
- 40. Let a and b be two non-zero vectors in \mathbb{R}^3 such that $|a \times b| = |a| |b|$. Then,
 - (A) a and b are orthogonal.
 - (B) a and b are parallel.
 - (C) the angle between a and b is $\pi/4$.
 - (D) a conclusion is not possible with the given data.

- 41. Let a, b and c be three vectors in \mathbb{R}^3 , Then, $(a \times b) \cdot ((b \times c) \times (c \times a))$ is
 - (A) $((a \times b) \cdot c)^2$.
 - (B) $(a \cdot (b \times c))^2$.
 - (C) $a \cdot (b \times c) + (a \times b) \cdot c$.
 - (D) is always 0.
- 42. Consider the two space curves given by the parametric equations $\gamma_1(t) := (t, t^2, t^3)$, for all $t \in \mathbb{R}$ and $\gamma_2(s) := (s 1, s^2 + s + 4, 7s 13)$ for all $s \in \mathbb{R}$. Then, they
 - (A) never intersect.
 - (B) intersect exactly at 1 point.
 - (C) intersect exactly at 2 points.
 - (D) intersect exactly at 3 points.
- 43. For the surface $x^2 + 9y^2 z^2 = 16$, the tangent plane at (4, 1, 3) is given by
 - (A) 8x + 18y 3z = 41.
 - (B) 4x + 9y 3z = 16.
 - (C) x + 9y z = 10.
 - (D) 4x + y 3z = 8.
- 44. Let $\sigma : (-1, 1) \to \mathbb{R}^3$ be a differentiable curve such that $\sigma'(t) \cdot \sigma'(t) = 1$ for all $t \in (-1, 1)$. Then,
 - (A) $\sigma''(t)$ is perpendicular to $\sigma'(t)$ for all $t \in (-1, 1)$.
 - (B) $\sigma''(t)$ is parallel to $\sigma'(t)$ for all $t \in (-1, 1)$.
 - (C) $\sigma(t) = (t, 0, 0)$ for all $t \in (-1, 1)$.
 - (D) $\sigma(t) \cdot \sigma'(t) = t$ for all $t \in (-1, 1)$.

45. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be thrice differentiable and vanish on the boundary of the region $\Omega = (-1, 1) \times (-1, 1)$. Then,

$$\int_{-1}^{1} \int_{-1}^{1} \operatorname{div}(\operatorname{grad} f)(x, y) dx dy$$

is

- (A) never 0.
- (B) 1.
- (C) 0.
- (D) dependent on f.
- 46. Let X, Y, Z be three vectors in \mathbb{R}^3 such that $X = \hat{\mathbf{i}} + 2\hat{\mathbf{k}}$ and $Y \times Z = \hat{\mathbf{i}} 2\hat{\mathbf{j}} 6\hat{\mathbf{k}}$, where $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ are the standard unit vectors along the coordinate directions. Then, the volume of the parallelpiped spanned by X, Y, Z is
 - (A) 2.
 - (B) 4.
 - (C) 6.
 - (D) 8.
- 47. Let *E* be the ellipsoid $(x-1)^2 + y^2 + \frac{1}{9}z^2 = 1$ and *S* be the sphere with center (1,0,4) and radius $\sqrt{7}$. Then, $E \bigcap S$ is
 - (A) an ellipse, but not a circle.
 - (B) the set $\{(x, y, z) : (x 1)^2 + y^2 = 3/4\}.$
 - (C) the set $\{(x, y, z) : (x 1)^2 + y^2 = 3/4, z = 3/2\}.$
 - (D) the empty set.
- 48. Let S be the plane whose normal vector make angles $\pi/3, \pi/4, \pi/3$ with x, y, z axes respectively. If the point (1, 1, 1) is in S, then, the equation of S is
 - (A) $\sqrt{2}x + y + z = 2 + \sqrt{2}$.
 - (B) $x + \sqrt{2}y + z = 2 + \sqrt{2}$.
 - (C) $x \sqrt{2}y + z = 1 \sqrt{2}$.
 - (D) $\sqrt{2}x + y + \sqrt{2}z = 2\sqrt{2} + 1.$

- 49. Let x be a real number with $\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{2}}$. Then, the quantity $\frac{x}{\sqrt{2}} + \frac{\sqrt{2}}{x}$ lies in
 - (A) $[1, \sqrt{2}).$
 - (B) $[\sqrt{2}, \sqrt{3}).$
 - (C) $[\sqrt{3}, 2).$
 - (D) $[2,\infty)$.
- 50. Let a_1, a_2, a_3, a_4 be any 4 consecutive binomial coefficients in the expansion of $(x + y)^n$. Then, $\frac{a_1}{a_1+a_2} + \frac{a_3}{a_3+a_4}$ is

(A)
$$\frac{2a_1}{a_1 + a_2}$$
.
(B) $\frac{2a_2}{a_2 + a_3}$.
(C) $\frac{2a_3}{a_3 + a_4}$.
(D) $\frac{2a_4}{a_4 + a_1}$.