Instructions

- 1. This question paper has forty multiple choice questions.
- 2. Four possible answers are provided for each question and only one of these is correct.
- 3. Marking scheme: Each correct answer will be awarded 2.5 marks, but 0.5 marks will be **deducted** for each incorrect answer.
- 4. Answers are to be marked in the OMR sheet provided.
- 5. For each question darken the appropriate bubble to indicate your answer.
- 6. Use only HB pencils for bubbling answers.
- 7. Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- 8. If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- 9. Let \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the set of natural numbers, integers, rational numbers, real numbers and complex numbers respectively.

Integrated Ph. D./ Mathematical Sciences

- 1. Let X be a set with 30 elements. Let A, B, C be subsets of X with 10 elements each such that $A \cap B \cap C$ has 4 elements. Suppose $A \cap B$ has 5 elements, $B \cap C$ has 6 elements, and $C \cap A$ has 7 elements, how many elements does $A \cup B \cup C$ have ?
 - (A) 16.
 - (B) 14.
 - (C) 15.
 - (D) 30.
- 2. If $\alpha_1, \alpha_2, \dots, \alpha_6$ are roots of $x^6 + x^2 + 1 = 0$, then which of the following is the value of $(1 2\alpha_1)(1 2\alpha_2) \cdots (1 2\alpha_6)$?
 - (A) 0.
 - (B) 1.
 - (C) 64.
 - (D) 81.
- 3. If *a*, *b* are arbitrary positive real numbers, then the least possible value of $\frac{6a}{5b} + \frac{10b}{3a}$ is
 - (A) 4.
 - (B) $\frac{6}{5}$. (C) $\frac{10}{3}$. (D) $\frac{68}{15}$.

- 4. Let $p(x) = x^{10} + a_1 x^9 + \dots + a_{10}$ be a polynomial with real coefficients. Suppose p(0) = -1, p(1) = 1, p(2) = -1. Let R be the number of real zeros of p(x). Which of the following must be true ?
 - (A) $R \ge 4$.
 - (B) R = 3.
 - (C) R = 2.
 - (D) R = 1.
- 5. Let p(x) and q(x) be non-zero polynomials with real coefficients such that $\operatorname{degree}(p(x)) > \operatorname{degree}(q(x))$. If the graphs of y = p(x) and y = q(x) intersect in 3 points, which of the following must be true ?
 - (A) degree $(p(x)) \le 2$.
 - (B) degree $(p(x)) \ge 3$.
 - (C) degree(p(x)) = 2.
 - (D) degree(p(x)) = 6.

6. Let $A = \begin{pmatrix} 12 & 24 & 5 \\ x & 6 & 2 \\ -1 & -2 & 3 \end{pmatrix}$. The value of x for which the matrix A is not invertible is

- (A) 6.
- (B) 12.
- (C) 3.
- (D) 2.
- 7. Let a, b be arbitrary real numbers satisfying $a^2 + b^2 = 10$. The largest possible value of |a + 2b| is
 - (A) 7.
 - (B) 5.
 - (C) $3\sqrt{10}$.
 - (D) $\sqrt{50}$.

8. Let $A = \begin{pmatrix} \pi & p \\ q & r \end{pmatrix}$ where p, q, r are rational numbers. If det A = 0 and $p \neq 0$, then the value of $q^2 + r^2$

- (A) is 2.
- (B) is 1.
- (C) is 0.
- (D) cannot be determined using the given information.
- 9. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2 × 2 real matrix with det(A) = 1. If A has no real eigenvalues then
 - (A) $(a+d)^2 < 4.$
 - (B) $(a+d)^2 = 4.$
 - (C) $(a+d)^2 > 4.$
 - (D) $(a+d)^2 = 16.$
- 10. Let $P = \{(x, y, z) \in \mathbb{R}^3 \mid x + y z = 0\}$. Suppose $A : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation satisfying $A(v) = \mathbf{0}$ for all $v \in P$ and also $A(0, 0, 1) = \mathbf{0}$ (here $\mathbf{0}$ denotes the vector (0, 0, 0)). Then
 - (A) The dimension of the null space of A is 2.
 - (B) A is the zero linear transformation.
 - (C) Image $A = \mathbb{R}^3$.
 - (D) The dimension of the image of A is 2.
- 11. Suppose $A : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $A^3 = I$, where I is the identity transformation. Then
 - (A) All eigenvalues of A have to be real.
 - (B) The product of the eigenvalues of A must be 1.
 - (C) Necessarily A = I.
 - (D) A need not be an invertible matrix.

- 12. Let the group $G = \mathbb{R}$ under addition and the group H = the set of all positive real numbers under multiplication. Then
 - (A) H is a cyclic group.
 - (B) G is a cyclic group.
 - (C) G and H are isomorphic
 - (D) G and H are not isomorphic.
- 13. A generator for a group G is an element $g \in G$ such that every element of G is equal to some power of g. Let G be a cyclic group of order 7. Then the number of generators of G is
 - (A) 1.
 - (B) 3.
 - (C) 6.
 - (D) 7.
- 14. Let G be the set of 2×2 real matrices which are invertible. Consider G with the binary operation \circ of matrix multiplication. Then
 - (A) (G, \circ) is a finite group.
 - (B) (G, \circ) is an infinite group.
 - (C) (G, \circ) is an abelian group.
 - (D) (G, \circ) is not a group.
- 15. Define a relation \sim on \mathbb{R} as follows: given $x, y \in \mathbb{R}, x \sim y$ iff x y is a rational number. Then
 - (A) Given x, there are only finitely many y such that $y \sim x$.
 - (B) Given x, the set of y such that $y \sim x$ is a bounded subset of \mathbb{R} .
 - (C) \sim is not an equivalence relation.
 - (D) \sim is an equivalence relation.

- 16. Let S denote the set of unit vectors in \mathbb{R}^3 and W a vector subspace of \mathbb{R}^3 . Let $V = W \cap S$. Then
 - (A) V is always a subspace of \mathbb{R}^3 .
 - (B) V is a subspace of \mathbb{R}^3 iff W has dimension 1.
 - (C) V is a subspace of \mathbb{R}^3 iff W has dimension 3.
 - (D) V is never a subspace of \mathbb{R}^3 .
- 17. Define a sequence s_n by

$$s_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$$

Then the limit of s_n as n tends to infinity

- (A) is 0.
- (B) is 1.
- (C) is ∞ .
- (D) doesn't exist.

18. If
$$\lim_{x \to 0} \left(\frac{1+cx}{1-cx}\right)^{\frac{1}{x}} = 4$$
, then $\lim_{x \to 0} \left(\frac{1+2cx}{1-2cx}\right)^{\frac{1}{x}}$ is
(A) 2.
(B) 4.
(C) 16.

- (D) 64.
- 19. Let the limits of the sequences a_n and b_n , respectively, be k and k^3 . If the sequence $a_1, b_1, a_2, b_2, \dots, \dots$ has a limit, then the value of this limit
 - (A) is 0 or 1 or −1.
 (B) is 0 or 1.
 (C) is k + k³.
 (D) is k⁴.

20. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Define $g : [a, b] \to \mathbb{R}$ by $g(x) = \sup\{f(y) : y \in [a, x]\}$. Then g(x)

- (A) must be differentiable.
- (B) must be continuous and Riemann integrable.
- (C) must be continuous, but not Riemann integrable.
- (D) need not be continuous.

21. If p is a real polynomial with p(0) = 1 and p'(x) > 0 for all x then

- (A) p has more than one real zero.
- (B) p has exactly one positive zero.
- (C) p has exactly one negative zero.
- (D) p has no real zero.

22. If y = f(x) satisfies the differential equation $y' = \cos y$, y(0) = 0 then

- (A) $|f(x)| \le x^2$.
- (B) $|f(x)| \leq |x|$.
- (C) $|f(x)| \leq |\sin x|$.
- (D) $|f(x)| \le |\cos x|$.
- 23. For a square matrix A, let tr(A) denote the sum of its diagonal entries. Let I denote the identity matrix. If A and B are 2×2 matrices with real entries such that $\det(A) = \det(B) = 0$ and $tr(B) \neq 0$, then the limit of $\frac{\det(A + tI)}{\det(B + tI)}$ as $t \to 0$ is
 - (A) zero.
 - (B) infinity.
 - (C) $\frac{tr(A)}{tr(B)}$.
 - (D) $\det(A+B)$.

- 24. Let $p(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0$ be a polynomial. Then $\lim_{n \to \infty} n \int_0^1 x^n p(x) dx$ equals
 - (A) p(1).
 - (B) p(0).
 - (C) p(1) p(0).
 - (D) ∞ .

25. The function f defined by
$$f(x) = \begin{cases} e^{-1/x}, \ x > 0\\ 0, \ x \le 0 \end{cases}$$

- (A) is differentiable for all real values of x.
- (B) is not differentiable at x = 0.
- (C) is not differentiable for x < 0.
- (D) is not differentiable for x > 0.
- 26. Let $\{a_n\}$ be a sequence of distinct real numbers which has no convergent subsequence. Then $\lim_{n\to\infty} |a_n|$
 - (A) is 0.
 - (B) is ∞ .
 - (C) is 1.
 - (D) does not exist.

27. The largest term in the sequence $x_n = \frac{1000^n}{n!}$, n = 1, 2, 3, ...

- (A) is x_{999} .
- (B) is x_{1001} .
- (C) is x_1 .
- (D) does not exist.
- 28. A curve in \mathbb{R}^2 whose normal at each point passes through (0,0) is a
 - (A) straight line.
 - (B) parabola.
 - (C) hyperbola.
 - (D) circle.

29. Let f be a continuous function on [0,1]. Then $\lim_{n\to\infty}\sum_{j=0}^n \frac{1}{n}f(\frac{j}{n})$ is

(A)
$$\frac{1}{2} \int_{0}^{\frac{1}{2}} f(x) dx.$$

(B) $\int_{\frac{1}{2}}^{1} f(x) dx.$
(C) $\int_{0}^{1} f(x) dx.$
(D) $\int_{0}^{\frac{1}{2}} f(x) dx.$

- 30. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ exist and are continuous. Let $D_u f(x, y)$ denote the directional derivative of f in the direction of $u \in \mathbb{R}^2$. If $D_{(1,1)}f(0,0) = 0$ and $D_{(1,-1)}f(0,0) = 0$, then
 - (A) $D_u f(0,0) = 1$ for some $u \in \mathbb{R}^2$.
 - (B) $D_u f(0,0) = -1$ for some $u \in \mathbb{R}^2$.
 - (C) $D_u f(0,0) = 0$ for all $u \in \mathbb{R}^2$.
 - (D) $D_u f(0,0)$ may not exist for some $u \in \mathbb{R}^2$.
- 31. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f \circ f = f$. Then
 - (A) f must be constant.
 - (B) f(x) = x for all x in the range of f.
 - (C) f must be a non-constant polynomial.
 - (D) There is no such function.

32. Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that $f(x) \ge 0$ for $x \in [0,1]$.

If
$$f(x) \leq \int_0^x f(t) dt$$
 for all $0 \leq x \leq 1$, then
(A) $f(x) = 0$ for all $x \in [0, 1]$.
(B) $f(x) = x$ for all $x \in [0, 1]$.
(C) There is no such function.

(D) f(x) = c for all $x \in [0, 1]$ and some c > 0.

33. Consider the ordinary differential equation

$$y'' + 4y = \sin 2t, \ y(0) = 0.$$

Then the solution y(t)

- (A) converges to 0 as $t \to \infty$ with no oscillations.
- (B) converges to 0 as $t \to \infty$ and the solution is oscillating.
- (C) is oscillating and bounded.
- (D) is unbounded.
- 34. Let y(t) be a solution to the differential equation $y' = y^2 + t$, then y(t) is differentiable
 - (A) once but not twice.
 - (B) twice but not 3 times.
 - (C) 3 times but not 4 times.
 - (D) infinitely many times.
- 35. Which of the following is a solution to the differential equation $y' = |y|^{1/2}$, y(0) = 0, where square root means the positive square root ?
 - (A) $y(t) = t^2/4$.
 - (B) $y(t) = -t^2/4$.
 - (C) y(t) = t|t|/4.
 - (D) y(t) = -t|t|/4.
- 36. The number of independent solutions of the differential equation $y^{(4)}-2y^{(2)}+y=0$ (here $y^{(2)}$ and $y^{(4)}$ represent the second and fourth derivatives of y respectively) is
 - (A) 4.
 - (B) 3.
 - (C) 2.
 - (D) 1.

- 37. The number of non-trivial polynomial solutions of the differential equation $x^3y'(x) = y(x^2)$ is
 - (A) zero.
 - (B) one.
 - (C) three.
 - (D) infinity.
- 38. Let $\vec{p} = 3\vec{i} + 2\vec{j} + \vec{k}$ and $\vec{q} = \vec{i} + 2\vec{j} + 3\vec{k}$ be vectors in \mathbb{R}^3 (here $\vec{i}, \vec{j}, \vec{k}$ denote the unit vectors along the positive X, Y, Z axes respectively). Suppose $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}$ is a unit vector such that $\vec{v} \cdot \vec{p} = 0 = \vec{v} \cdot \vec{q}$. The value of |a + b + c| is :
 - (A) 6.
 - (B) 3.
 - (C) 1.
 - (D) 0.
- 39. Let \vec{a} , \vec{b} , \vec{c} be vectors in \mathbb{R}^3 . If $\vec{a} \neq 0$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then which of the following must certainly be true ?
 - (A) $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$
 - (B) $\vec{b} = \vec{c}$
 - (C) There is a real number λ such that $\vec{b} = \vec{c} + \lambda \vec{a}$
 - (D) \vec{a} must be orthogonal to both \vec{b} and \vec{c}
- 40. For a curve $\gamma : [a, b] \to \mathbb{R}^2$, let $\int_{\gamma} f$ denote the line integral of a function $f : U \subset \mathbb{R}^2 \to \mathbb{R}$ defined on some open set U containing $\{\gamma(t) : t \in [a, b]\}$. The value of $\int_{\mathbb{S}^1} f$, where $f(x, y) = \frac{y}{x^2 + y^2}$ and $\mathbb{S}^1 = \{(\cos t, \sin t) : 0 \le t \le 2\pi\}$ (i.e, the circle of radius one centered at the origin) is
 - (A) 0.
 - (B) 1.
 - (C) π .
 - (D) 2π .