Instructions

- 1. This question paper has forty multiple-choice questions.
- 2. Four possible answers are provided for each question and only one of these is correct.
- 3. Marking scheme: Each correct answer will be awarded 2.5 marks, but 0.5 marks will be deducted for each incorrect answer.
- 4. Answers are to be marked in the OMR sheet provided.
- 5. For each question, darken the appropriate bubble to indicate your answer.
- 6. Use only HB pencils for bubbling answers.
- 7. Mark only one bubble per question. If you mark more than one bubble for a question, your answer for that question will be evaluated as incorrect.
- 8. If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- 9. Let $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} denote the set of natural numbers, the set of integers, the set of rational numbers, the set of real numbers and the set of complex numbers respectively.
- 10. Let $[x]$ denote the greatest integer less than or equal to x for a real number x.

Integrated Ph. D./ Mathematical Sciences

1. The parametrized curve

$$
x = \frac{1 - u^2}{1 + u^2}, y = \frac{2u}{1 + u^2}, z = 2 \tan^{-1} u, \quad -\infty < u < \infty
$$

lies on a

- (a) hyperboloid,
- (b) sphere,
- (c) cylinder,
- (d) cone.
- 2. Let $0 < \alpha < \pi/4$ be an angle. The two straight lines $x^2 + y^2 = (x \tan \alpha y)^2$ include an angle
	- (a) 2α ,
	- (b) α ,
	- (c) $\pi/2 + 2\alpha$,
	- (d) $\pi/2 2\alpha$.
- 3. Let P be a polynomial in x such that

$$
|P(x)| \le C(1+|x|)^{5/2} \text{ for all } x \in \mathbb{R}
$$

and for some constant $C > 0$. Then

- (a) P is always linear,
- (b) P is of degree at most 2,
- (c) P is either a cubic polynomial or a quartic polynomial,
- (d) $P(0)$ is always C.

4. Let P, Q and R be polynomials. Define

$$
S(x) = P(x) + \frac{Q(x)}{1+x^2} + \frac{R(x)}{(1+x^2)^2}.
$$

If $S(n) = 0$ for all $n \in \mathbb{Z}$, then

- (a) $R(x)$ is always divisible by $1 + x^2$,
- (b) $R(x)$ is always divisible by $(1+x^2)^2$,
- (c) $R(x)$ is always divisible by $(1+x^2)^3$,
- (d) P, Q and R must be identically zero.
- 5. Let $y(x)$ be a solution to the ordinary differential equation

$$
\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0
$$

with constants $A \neq 0, B \neq 0$ and $y(0) \neq 0$. Then

- (a) $y(x)$ is always bounded on \mathbb{R} ,
- (b) $y(x)$ is always unbounded on \mathbb{R} ,
- (c) $y(x)$ is bounded or unbounded on R depending on the value of $y'(0)$,
- (d) such a solution cannot exist.
- 6. Let $f(x) = x^4 + ax^3 + bx^2 + cx + d$ be a polynomial with a, b, c and d real. If $f'(x)$ has three distinct real roots, then
	- (a) there always exists a real constant k such that $f(x) = k$ has exactly one real root,
	- (b) there always exists a real constant k such that $f(x) = k$ has three distinct real roots,
	- (c) $f(x) = k$ has four distinct real roots for any real number k,
	- (d) $f(x) = k$ has two real and two complex roots for any real number k.

7. Let X and Y be non-empty sets and let

 $f_1, f_2 : X \longrightarrow Y$ and $q_1, q_2 : Y \longrightarrow X$

be mappings. If $g_2 \circ f_2 \circ g_1 \circ f_1 : X \to X$ is a bijection, then

- (a) f_1, f_2, g_1 must be injective,
- (b) f_2, g_1, g_2 must be injective,
- (c) f_2, g_1 must be bijective,
- (d) f_1 must be injective and g_2 must be surjective.
- 8. A non-trivial binary relation R on a non-empty set X is called (i) symmetric if xRy implies yRx, (ii) anti-symmetric if xRy and yRx imply $x = y$, (iii) reflexive if xRx holds for all x in X, (iv) transitive if xRy and yRz imply xRz, (v) an equivalence relation if it is symmetric, reflexive and transitive. Moreover, R is called the equality relation if xRy holds if and only if $x = y$.

Let ρ be a binary relation on a non-empty set X. If ρ is symmetric and antisymmetric, then

- (a) ρ is the equality relation,
- (b) ρ is an equivalence relation,
- (c) X has at most two elements,
- (d) ρ may not be reflexive.
- 9. Let L be a line in the plane passing through the point $P = (4,3)$. Let Q and R be the points of intersection of L with the x-axis and the y-axis respectively. Let the segment QR be in the first quadrant. If $PQ : PR = 5 : 3$, then the equation of L is

(a)
$$
9x + 20y = 96
$$
,
\n(b) $\frac{x-4}{5} = \frac{y-3}{3}$,
\n(c) $\frac{x-4}{3} = \frac{y-5}{5}$,
\n(d) $3x + 5y = 27$.

10. Let $P(x) = x^4 + x^2 + 1$. Then $\int_{-1}^{1} P(\sin x) P'(\sin x) dx$ is

- (a) 0,
- (b) 1,
- (c) π ,
- (d) $1/\pi$.

11. Consider

$$
f(x) = |x|e^{ax} \text{ and } g(x) = xe^{ax}.
$$

Then the pair $\{f,g\}$ is

- (a) linearly independent on R,
- (b) linearly dependent on $(-\varepsilon,\varepsilon)$ for some $0<\varepsilon<1,$
- (c) linearly independent on $(0, \infty)$,
- (d) linearly independent on $(-\infty, 0)$.

12. Let $f: (-1, 1) \to \mathbb{R}$ be a function satisfying

$$
\frac{1}{2} |x \log |x|| \le |f(x)| \le |x \log |x||
$$

for all $x \neq 0$. Then

- (a) f is never differentiable at $x = 0$,
- (b) f is always differentiable at $x = 0$,
- (c) f is differentiable at $x = 0$ if $f(0) = 0$,
- (d) |f| is always differentiable at $x = 0$.
- 13. Let ${x_n}_{n\in\mathbb{N}}$ be a sequence of real numbers converging to $A \neq 0$. Let $y_n =$ $\max\{x_n, A - x_n\}$. Then the limit of the sequence $\{y_n\}_{n\in\mathbb{N}}$ is always
	- (a) 0,
	- (b) A,
	- (c) $\max\{A, 0\},\$
	- (d) $-\min\{A, 0\}.$
- 14. Let

 $f(x) = \sqrt{x} \sin(x)$ 1 \boldsymbol{x} $x_n = f$ $\begin{pmatrix} 2 \end{pmatrix}$ $(2n + 1)\pi$ \setminus .

The sequence $\{x_n\}$

for $x > 0$. Set

- (a) is a non-converging oscillatory sequence,
- (b) diverges to ∞ ,
- (c) converges to $\sqrt{\pi}$,
- (d) converges to 0.
- 15. Let the co-ordinates of the vertices of a plane triangle Δ be integers. If a is the area of the triangle Δ , then
	- (a) a must be an integer,
	- (b) a^2 must be an integer,
	- (c) $a + 1/2$ must be an integer,
	- (d) 2a must be an integer.

16. Consider the second order ordinary differential equation

$$
\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0
$$

where b and c are real constants. If

$$
y = xe^{-5x}
$$

is a solution, then

- (a) both b and c are positive,
- (b) b is positive, but c is negative,
- (c) b is negative, but c is positive,
- (d) both b and c are negative.
- 17. Let x and y be non-zero real numbers. Then the minimum value of

$$
|x|^3 + |y|^3 + \frac{1}{|x|^3} + \frac{1}{|y|^3}
$$

is

- $(a) 1/4,$
- (b) 1/2,
- (c) 2,
- (d) 4.

18. Consider the set $V = \{(x_1 - x_2 + x_3, x_1 + x_2 - x_3) : (x_1, x_2, x_3) \in \mathbb{R}^3\}$. Then

- (a) V is not a vector subspace of \mathbb{R}^2 ,
- (b) V is a vector subspace of \mathbb{R}^2 of dimension 0,
- (c) V is a vector subspace of \mathbb{R}^2 of dimension 1,
- (d) $V = \mathbb{R}^2$.

19. The set $S = \{(x, y) \in \mathbb{R}^2 : x^2 + 4y^2 + 6x + 4y + 12 = 0\}$ is

- (a) an infinite set,
- (b) a finite set with more than one element,
- (c) a singleton,
- (d) the empty set.
- 20. Suppose f is a twice differentiable function defined on the real line with continuous second derivative. If f satisfies $f(x+1) = f(x)$ for all $x \in \mathbb{R}$, then

$$
\int_0^1 x f''(x) dx
$$

is

- (a) $f(0)$,
- (b) $f(1)$,
- (c) $f'(0)$,
- (d) 0.

21. Let f be a continuous function from $[0, 4]$ to $[3, 9]$. Then

- (a) there must be an x such that $f(x) = 4$,
- (b) there must be an x such that $3f(x) = 2x + 6$,
- (c) there must be an x such that $2f(x) = 3x + 6$,
- (d) there must be an x such that $f(x) = x$.
- 22. If f is a differentiable function, define

$$
(Df)(x) = \frac{1}{2x} \frac{df}{dx}.
$$

Given $n \in \mathbb{N}$ and an *n*-times differentiable function f, define $(Dⁿ f)(x)$ by successively applying D for n times to the function f . Then

$$
D^8(e^{-x^2})
$$
 at $x = 0$

is

- (a) 1,
- (b) 0,
- (c) e,
- (d) e^{-1} .
- 23. Let A be a 5×5 matrix all of whose eigenvalues are zero. Then which of the following statements is always true?
	- (a) $A = -A$,
	- (b) $A^t = -A$,
	- (c) $A^t = A$,
	- (d) $A^5 = 0$.
- 24. If $x^2 2axy + y^2 2bx + 1 = 0$ represents a pair of straight lines, then the locus of the point (a, b) is
	- (a) a circle,
	- (b) a straight line,
	- (c) a pair of straight lines,
	- (d) a point.
- 25. Consider the real four-dimensional vector space of all linear transformations from \mathbb{R}^2 to \mathbb{R}^2 . What is the dimension of the subspace of all those linear transformations that map the line $y = x$ into itself?
	- (a) 1,
	- (b) 2,
	- (c) 3,
	- (d) 4.

26. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and $f(x) = 0$ for $|x| \ge 10$. Let

$$
g(x) = \sum_{k \in \mathbb{Z}} f(x + k).
$$

Then

- (a) g is differentiable and g' has infinitely many zeros.
- (b) g is continuous and not differentiable,
- (c) g is differentiable and g' has no zeros,
- (d) g is differentiable and g' has only finitely many zeros.
- 27. For a positive integer n, let I_n be the $n \times n$ identity matrix. Let G be the function on positive integers defined by $G(n)$ = the number of $n \times n$ matrices J with real entries which satisfy $J^2 + I_n = 0$. Then
	- (a) $G(n)$ can never be zero,
	- (b) $G(n) = 0$ if and only if n is even,
	- (c) $G(n) = 0$ if and only if n is odd,
	- (d) G is identically equal to zero.
- 28. Let $g : \mathbb{R} \to (0, \infty)$ be an unbounded differentiable function and define

$$
f(x) = \int_0^{g(x)} \sin^4(2t) dt.
$$

Then which of the following statements is true?

- (a) f' is always positive,
- (b) f' has exactly one zero,
- (c) f' has exactly two distinct zeros,
- (d) f' has more than two distinct zeros.
- 29. The value of $\int_0^2 [x^2] dx$ lies between
	- (a) 1 and 1.5,
	- (b) 1.5 and 2,
	- (c) 2 and 2.5,
	- (d) 2.5 and 3.
- 30. Let A be the group of rational numbers under addition. Let M be the group of positive rational numbers under multiplication. Then which of the following is true?
	- (a) There are infinitely many isomorphisms between A and M.
	- (b) There are only finitely many isomorphisms between A and M.
	- (c) There is a unique isomorphism between A and M.
	- (d) There is no isomorphism between A and M.
- 31. Let C be the subset of the right half plane contained within the lines $y = x$ and $y = -x$. Let (x_1, y_1) and (x_2, y_2) be two points in C. Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Then
	- (a) $|z_1 + z_2| \geq (1/$ √ $2)(|z_1| + |z_2|)$ always, $[•]$ </sup>
	- (b) $|z_1 + z_2|$ < (1/ $2)(|z_1| + |z_2|)$ always, √
	- (c) $|z_1 z_2| \geq (1/$ $2)(|z_1| + |z_2|)$ always,
	- (d) $|z_1 + z_2| = |z_1| + |z_2|$ always.
- 32. Let $G = \{a \in \mathbb{R} : a > 0, a \neq 1\}$. Then, under the binary operation $a * b = a^{\log b}$ the set G is
	- (a) a commutative group,
	- (b) a non-commutative group,
	- (c) a semigroup but not a group,
	- (d) not a semigroup.
- 33. For each t in R, consider the straight lines $tax-by+t = 0$ and $ax+tby-1 = 0$. Let $(u(t), v(t))$ be their point of intersection. Then the locus of the point $(u(t), v(t))$ is
	- (a) $a^2u^2 + b^2v^2 = 1$, (b) $b^2u^2 + a^2v^2 = 1$, (c) $\frac{u^2}{a^2}$ $\frac{u^2}{a^2} + \frac{v^2}{b^2}$ $\frac{v^2}{b^2}=1,$ (d) $u - v = 0$.
- 34. Let f_1 and f_2 be two real valued functions defined on the real line. Define two functions g and h by

$$
g(x) = \max\{f_1(x), f_2(x)\}\
$$
and $h(x) = \min\{f_1(x), f_2(x)\}\.$

Then

$$
g(x)^2 + h(x)^2 + 3g(x)h(x) = f_1(x)^2 + f_2(x)^2 + 3f_1(x)f_2(x)
$$
 holds for all $x \in \mathbb{R}$

- (a) always,
- (b) only if $f_1(x) = f_2(x)$ for all x in \mathbb{R} ,
- (c) only if f_1 and f_2 are both positive functions or both negative functions,
- (d) only if at least one of the functions f_1 and f_2 is identically zero.
- 35. For each natural number $n \geq 2$, let \mathbb{Z}_n denote the additive group of integers modulo *n*. Suppose $\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{mn}$. Then
	- (a) m divides n or n divides m ,
	- (b) $m = n$,
	- (c) $m + n = mn$,
	- (d) gcd $(m, n) = 1$.
- 36. Let $\gamma : \mathbb{R} \to \mathbb{R}^3$ be a three times differentiable map. Moreover, suppose $\gamma'(t)$ is a unit vector for every $t \in \mathbb{R}$. Then
	- (a) $\gamma'(t)$ is orthogonal to $\gamma''(t)$ for every $t \in \mathbb{R}$,
	- (b) $\gamma'(t)$ is parallel to $\gamma''(t)$ for every $t \in \mathbb{R}$,
	- (c) the image of γ must lie on a sphere,
	- (d) the image of γ must lie in a plane.
- 37. Given a group G , its center is

$$
\{h \in G : hg = gh \text{ for all } g \in G\}.
$$

Let G be the group

$$
G = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z} \}.
$$

Then the center of G

(a) is G itself,

(b) is
$$
\left\{ \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : x \in \mathbb{Z} \right\}.
$$

(c) consists only of the 3×3 identity matrix,

(d)
$$
\left\{ \begin{pmatrix} 1 & x & x \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} : x \in \mathbb{Z} \right\}.
$$

38. Let G be a group of order 6. The number of elements of order 2 in the group G is

- (a) exactly 1,
- (b) exactly 2,
- (c) exactly 3,
- (d) either 1 or 3.

39. Let $\mathbb{F}_2 = \{0, 1\}$ be the field with two elements. Consider

$$
GL_2(\mathbb{F}_2) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{F}_2 \text{ and } ad \neq bc \}
$$

with the usual matrix multiplication. Then $GL_2(\mathbb{F}_2)$ is

- (a) a commutative group,
- (b) a non-commutative group,
- (c) a semi-group, but not a group,
- (d) not a semi-group.
- 40. Let **a**, **b**, **c** be three vectors such that **a** \times (**b** \times **c**) = (**a** \times **b**) \times **c** \neq 0. Then which of the following is true:
	- (a) \bf{c} is parallel to \bf{a} ,
	- (b) **b** is a linear combination of **a** and **c**,
	- (c) **b** is orthogonal to both **a** and **c**,
	- (d) c is orthogonal to a.