

INDIAN INSTITUTE OF SCIENCE BANGALORE - 560012

ENTRANCE TEST FOR ADMISSIONS - 2010

Program: Research

Entrance Paper: Mathematics

Paper Code : MA

Day & Date SUNDAY, 25TH APRIL 2010

Time 9.00 A.M. TO 12.00 NOON

Instructions

- (1) This question paper consists of two parts: Part A and Part B, and carries a total of 100 Marks.
- (2) There is no negative marking.
- (3) Candidates are asked to fill in the required fields on the sheet attached to the answer book.
- (4) Part A carries 20 multiple choice questions carrying 2 marks each. Answer all questions in Part A.
- (5) Answers to Part A are to be marked in the OMR sheet provided.
- (6) For each question, darken the appropriate bubble to indicate your answer.
- (7) Use only HB pencils for bubbling answers.
- (8) Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- (9) If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- (10) Part B has 8 questions. Answer any 6 in this part. Each question in this part carries 10 marks.
- (11) Answers to Part B are to be written in the separate answer book provided.
- (12) Answer to each question in Part B should begin on a new page.
- (13) Let Z, R, Q and C (Z₊, R₊, Q₊ and C₊) denote the set of (respectively positive) integers, real numbers, rational numbers and complex numbers respectively.
- (14) For $n \geq 1$, the norm given by $\|(x_1, x_2, \dots, x_n)\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$ denotes the standard norm on \mathbb{R}^n . The metric given by $d(x, y) = \|x y\|$ is called the standard metric on \mathbb{R}^n .

MATHEMATICS

PART A

- (1) Let $\{x_n\}$ be an unbounded sequence of non-zero real numbers. Then,
 - (A) $\{x_n\}$ must have a convergent subsequence.
 - (B) $\{x_n\}$ cannot have a convergent subsequence.
 - (C) $\{1/x_n\}$ must have a convergent subsequence.
 - (D) $\{1/x_n\}$ cannot have a convergent subsequence.
- (2) Let $f_n: [0,1] \to \mathbb{R}$ be the sequence of functions

$$f_n(x) = \left\{ egin{array}{ll} \sin(n\pi x) & ext{if } x \in [0,1/n], \\ 0 & ext{if } x \in (1/n,1]. \end{array}
ight.$$

Then,

- (A) The sequence $\{f_n\}$ does not converge pointwise.
- (B) The sequence $\{f_n\}$ converges pointwise but the limit is not continuous.
- (C) The sequence $\{f_n\}$ converges pointwise but not uniformly.
- (D) The sequence $\{f_n\}$ converges uniformly.
- (3) Suppose $f: [0,1] \to \mathbb{R}$ is a function satisfying $|f(x) f(y)| \le (x-y)^2$ for all $x, y \in [0,1]$. Then,
 - (A) f is necessarily continuous but need not be differentiable.
 - (B) f may be strictly decreasing.
 - (C) f is necessarily constant.
 - (D) no such function f exists.
- (4) The number of symmetric, positive definite 8×8 matrices having trace equal to 8 and determinant equal to 1 is
 - (A) 0.
 - (B) 1.
 - (C) greater than 1 but finite.
 - (D) infinite.

- (5) Suppose $K \subset \mathbb{R}^2$ is a connected set such that for all points $x \in K$, $K \setminus \{x\}$ (the complement of x in K) is not connected. Then,
 - (A) K must be homeomorphic to an interval of \mathbb{R} .
 - (B) K must have empty interior.
 - (C) K must be open.
 - (D) K must be closed.
- (6) Let S be a collection of pairwise disjoint open sets in the plane \mathbb{R}^2 . Then,
 - (A) S cannot be finite.
 - (B) S cannot be countably infinite.
 - (C) S cannot be uncountably infinite.
 - (D) S must be empty.
- (7) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation. Then,
 - (A) T must be continuous but is not necessarily uniformly continuous.
 - (B) T must be uniformly continuous.
 - (C) T is continuous if and only if T is onto.
 - (D) T is uniformly continuous if and only if T is onto.
- (8) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $\langle Tx, x \rangle = 0$ for all $x \in \mathbb{R}^n$. Then, it is necessarily true that
 - (A) trace(T) = 0.
 - (B) $\det(T) = 0$.
 - (C) all eigenvalues of T are real.
 - (D) T = 0.
- (9) Let $G \subset (\mathbb{C}^*, \cdot)$ be a finite subgroup of the group \mathbb{C}^* of non-zero complex numbers with multiplication as the group operation. Then we must have
 - (A) $\sum_{z \in G} z = 0$.
 - (B) $\sum_{z \in G} z = 1$.
 - (C) $\prod_{z \in G} z = 0$.
 - (D) $\prod_{z \in G} z = 1$.

- (10) Suppose A is a 2×2 matrix over real numbers with trace(A) = 0 and det(A) = 2. Then A may be
 - (A) orthogonal.
 - (B) symmetric.
 - (C) skew-symmetric.
 - (D) diagonal.
- (11) Let $\{x_n\}$ be a sequence of real numbers so that $\sum_{n=1}^{\infty} |x_n x| = c$, with c finite. Then
 - (A) $\{x_n\}$ may not be bounded.
 - (B) $\{x_n\}$ must converge to x.
 - (C) $\{x_n\}$ must converge to x + c.
 - (D) $\{x_n\}$ is bounded but not necessarily convergent.
- (12) For which of the following values of n is every abelian group of order n cyclic?
 - (A) n = 12.
 - (B) n = 45.
 - (C) n = 8.
 - (D) n = 21.
- (13) Assume a > 1. Then, $\lim_{n \to \infty} n^{-2} e^{(\log(n))^a}$ is
 - (A) 0 for all a > 1.
 - (B) 0 if and only if 1 < a < 2.
 - (C) ∞ for all a > 1.
 - (D) ∞ if and only if 1 < a < 2.
- (14) Let $f: [0,1] \to [0,1]$ be a continuous function such that $x < f(x) \le 1/2$ if $0 \le x < 1/2$ and $1/2 \le f(x) < x$ if $1/2 < x \le 1$. Let $a \in [0,1]$ and define x_n inductively by $x_1 = a$ and $x_{n+1} = f(x_n)$ for $n \ge 1$. Then $\lim_{n \to \infty} x_n$ is
 - (A) 1/2 for all $a \in [0, 1]$.
 - (B) 0 if and only if $0 \le a < 1/2$.
 - (C) 0 if and only if $1/2 < a \le 1$.
 - (D) 1 if and only if $1/2 < a \le 1$.

- (15) Let $f(x) = x^4 + ax^2 + bx + c$, where a, b, and c are real numbers. Then as a polynomial over \mathbb{R} ,
 - (A) f(x) is irreducible if and only if $b^2 4ac > 0$.
 - (B) f(x) is irreducible if and only if $b^2 4ac < 0$.
 - (C) f(x) is always irreducible.
 - (D) f(x) is always reducible.
- (16) Consider the permutation group S_6 on 6 letters and let $H \subset S_6$ be a subgroup with 9 elements. It is necessarily true that
 - (A) H is abelian but not cyclic.
 - (B) H is cyclic.
 - (C) H is not abelian.
 - (D) if H is abelian then H is cyclic.
- (17) Consider a set S of unit vectors in \mathbb{R}^2 such that $\langle x, y \rangle = -1/2$ if $x, y \in S$, $x \neq y$. Then, it is necessarily true that
 - (A) the set S is linearly independent.
 - (B) the set S generates \mathbb{R}^2 .
 - (C) the set S is either linearly independent or generates \mathbb{R}^2 .
 - (D) if the set S is linearly independent, then S generates \mathbb{R}^2 .
- (18) The radius of convergence of $\sum_{n=0}^{\infty} z^{n!}$ is
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) ∞.
- (19) The function $f(z) = e^{e^{1/z}}$
 - (A) is analytic at z = 0.
 - (B) has a removable singularity at z = 0.
 - (C) has a pole at z = 0.
 - (D) has an essential singularity at z = 0.

- (20) Let $f: \mathbb{C} \to \mathbb{C}$ be a function. Then the region $\Omega = \{z \in \mathbb{C} : |e^{-f(z)}| < 2\}$ can be described as
 - (A) $\Omega = \{z \in \mathbb{C} : \operatorname{Re} f(z) > -\log(2)\}.$
 - (B) $\Omega = \{z \in \mathbb{C} : \operatorname{Re} f(z) < -\log(2)\}.$
 - (C) $\Omega = \{z \in \mathbb{C} : \operatorname{Im} f(z) > -\log(2)\}.$
 - (D) $\Omega = \{z \in \mathbb{C} : \operatorname{Im} f(z) < -\log(2)\}.$

PART B

(1) Let $f,g:[0,1]\to\mathbb{R}$ be non-negative continuous functions such that

$$\sup_{0\leq x\leq 1}f(x)=\sup_{0\leq x\leq 1}g(x).$$

Show that f(t) = g(t) for some $t \in [0, 1]$.

(2) Let $f: [0,1] \to [0,1]$ be a function. Assume that, for every sequence $\{x_n\}$ in [0,1], whenever both the sequences $\{x_n\}$ and $\{f(x_n)\}$ converge, we have

$$\lim_{n\to\infty}f(x_n)=f\left(\lim_{n\to\infty}x_n\right).$$

Show that f is continuous.

(3) Let $f \colon [0, \infty) \to \mathbb{R}$ be a continuously differentiable function such that

$$f'(x) = \frac{1}{x^2 + \sin^2(x) + f(x)}, \ \forall x \ge 1,$$

and

$$f(x) \ge 0, \ \forall x > 1.$$

Show that $\lim_{x\to\infty} f'(x) = 0$. Deduce that $\lim_{x\to\infty} f(x)$ exists.

(4) Let f(x) be a continuous function on [0,1] satisfying

$$\int_0^1 f(x) dx = \int_0^1 x f(x) dx = 0.$$

Show that there exist $a, b \in [0, 1]$, a < b, such that f(a) = f(b) = 0.

- (5) Let V and W be vector spaces over \mathbb{R} and $A: V \to W$ a linear transformation. Suppose there exists a unique $B: W \to V$ with BA = I, show that AB = I.
- (6) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a surjective homomorphism from the additive group of integers to itself. Show that f must be injective.
- (7) Let $f: \mathbb{Q} \to \mathbb{Q}$ be an injective homomorphism from the additive group of rationals to itself. Show that f must be surjective.
- (8) Let p(z) and q(z) be relatively prime polynomials with complex coefficients so that $\deg(q(z)) \ge \deg(p(z)) + 2$ and let f(z) = p(z)/q(z). Show that the sum of the residues of f(z) over all poles is 0.