400

87

Total Pages: 33

JNUEE: Question Papers (2010-2012) Rs.20/-

ENTRANCE EXAMINATION, 2012

Pre-Ph.D./Ph.D. CHEMICAL SCIENCES

[Field of Study Code : CHEP (162)]

Time Allowed: 3 hours

Maximum Marks: 75

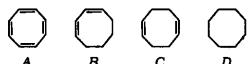
Weighted: 70

INSTRUCTIONS FOR CANDIDATES

- (i) All questions are compulsory.
- (ii) Answers should be written in the box given in page 3.
- (iii) Each correct answer carries 3 marks. Wrong answers carry (-1) mark.
- (iv) Rough work should be done in the space given below the questions.
- (v) If additional space is required, three extra sheets provided at the end of the paper can be utilized for rough work.
- (vi) Use of calculator is permitted.

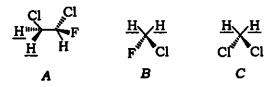
Fundamental Constants	, Values
Speed of light (c)	2.99792558×10 ⁸ m s ⁻¹
Elementary charge (e)	1·602176×10 ⁻¹⁹ C
Faraday's constant $(F = N_A e)$	9-64853×10 ⁴ C mol ⁻¹
Boltzmann's constant (k)	1·38065×10 ⁻²³ JK ⁻¹
Gas constant $(R = N_A k)$	8·31447 JK ⁻¹ mol ⁻¹
Planck's constant (h)	6·62608×10 ⁻³⁴ J-s
Avogadro's constant (N_A)	6·02214×10 ²³ mol ⁻¹
Atomic mass unit (u)	$1.66054 \times 10^{-27} \text{ kg}$
Electron mass (m _e)	9·10938×10 ⁻³¹ kg
Electron charge (e)	4 · 8 × 10 ⁻¹⁰ esu
Proton mass (m _p)	1·67262×10 ⁻²⁷ kg
Neutron mass (m_n)	1·67493×10 ⁻²⁷ kg
Vacuum permittivity ($\varepsilon_0 = 1/c^2 \mu_0$)	$8.85419 \times 10^{-12} \text{ J}^{-1} \text{ C}^{2} \text{ m}^{-1}$
4πε ₀	$1.11265 \times 10^{-10} \text{J}^{-1} \text{C}^2 \text{m}^{-1}$
Vacuum permeability (μ ₀)	$4\pi \times 10^{-7} \text{ J-s}^2 \text{ C}^{-2} \text{ m}^{-1}$
Bohr magneton $(\mu_B = e\hbar/2m_e)$	9·27401×10 ⁻²⁴ JT ⁻¹
Nuclear magneton $(\mu_N = e\hbar/2m_p)$	$5.05078 \times 10^{-27} \text{ JT}^{-1}$
Bohr radius $(a_0 = 4\pi\epsilon_0 \hbar^2 / m_e e^2)$	5·29177×10 ⁻¹¹ m
Fine-structure constant ($\alpha = \mu_0 e^2 c / 2h$)	$7 \cdot 29735 \times 10^{-3}$
Inverse of fine-structure constant (α^{-1})	1·37036×10 ²
Second radiation constant $(c_2 = hc/k)$	1·43878×10 ⁻² m-K
Standard acceleration of free fall (g)	9·80665 m s ⁻²

1. Menthyl chloride (MC) and neomenthyl chloride (NMC) upon reaction with sodium ethoxide in ethanol would produce the following products, respectively:


- (a) Only B; C (minor) and D (major)
- (b) Only A; C (minor) and D (major)
- (c) A (major), B (minor); C (major) and D (minor)
- (d) A (minor), B (major); only C

- 2. The basicity of EtNH₂ (I), HN=C(NH₂)₂ (II) and CH₃C(= NH)NH₂ (III) would follow the following order :
 - (a) II > III > I
 - (b) III > II > I
 - (c) I > II > III
 - (d) I > III > II

- 3. The conversions of cyclohexanone oxime to Nylon-6 and cyclic ketones to lactones involve, respectively
 - (a) Curtius rearrangement and Wolff rearrangement
 - (b) Wolff rearrangement and Lossen rearrangement
 - (c) Beckmann rearrangement and Baeyer-Villiger oxidation
 - (d) Curtius rearrangement and Baeyer-Villiger oxidation


- 4. The following is true for Cope reaction:
 - (a) Occurs at low temperature, tertiary amines are reactants, proceeds through SYN pathway
 - (b) Occurs at low temperature, tertiary amine oxides are reactants, proceeds through SYN pathway
 - (c) Occurs at high temperature, tertiary amine oxides are reactants, proceeds through ANTI pathway
 - (d) Occurs at low temperature, tertiary amine oxides are reactants, proceeds through ANTI pathway

5. Match the structure of the eight-membered ring compounds (A-D) with the following ¹H-NMR chemical shifts (in ppm):

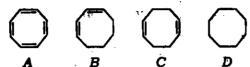
- (a) $A: \delta 5.74$ (s); $B: \delta 1.20 1.70$ (m, 4H), 1.85 2.50 (m, 4H), 5.35 5.94 (m, 4H); $C: \delta 2.39$ (m, 8H), 5.60 (m, 4H); $D: \delta 1.54$ (s)
- (b) $A: \delta 1 \cdot 54$ (s); $B: \delta 2 \cdot 39$ (m, 8H), $5 \cdot 60$ (m, 4H); $C: \delta 1 \cdot 20 1 \cdot 70$ (m, 4H), $1 \cdot 85 2 \cdot 50$ (m, 4H), $5 \cdot 35 5 \cdot 94$ (m, 4H); $D: \delta 5 \cdot 74$ (s)
- (c) $A: \delta 1 \cdot 54$ (s); $B: \delta 1 \cdot 20 1 \cdot 70$ (m, 4H), $1 \cdot 85 2 \cdot 50$ (m, 4H), $5 \cdot 35 5 \cdot 94$ (m, 4H); $C: \delta 2 \cdot 39$ (m, 8H), $5 \cdot 60$ (m, 4H); $D: \delta 5 \cdot 74$ (s)
- (d) $A: \delta 5.74$ (s); $B: \delta 2.39$ (m, 8H), 5.60 (m, 4H); $C: \delta 1.20 1.70$ (m, 4H), 1.85 2.50 (m, 4H), 5.35 5.94 (m, 4H); $D: \delta 1.54$ (s)

6. The underlined H atoms in molecules A, B and C are, respectively

- (a) Enantiotopic, homotopic and diastereotopic
- (b) Diastereotopic, enantiotopic and homotopic
- (c) Homotopic, enantiotopic and diastereotopic
- (d) Enantiotopic, diastereotopic and homotopic

7. Addition of a triplet (T) carbene to an alkene and a singlet (S) castiene to an alkene would produce, respectively

- (a) Only A and only D
- (b) Only B and only C
- (c) A and B and only D
- (d) A and B and only C


8. The reactions of A to B and C to D are examples of [x, ii] type of sigmatropic shifts, which can be denoted as

$$\begin{array}{c|c}
CD_2 & [x, y] \\
\hline
B & C
\end{array}$$

$$\begin{array}{c|c}
CD_2 & [x, y] \\
\hline
D$$

- (a) [1, 8] and [1, 3]
- (b) [3, 5] and [1, 3]
- (c) [3, 5] and [3, 3]
- (d) [1, 8] and [3, 3]

5. Match the structure of the eight-membered ring compounds (A-D) with the following H-NMR chemical shifts (in ppm)(1942)

- (a) $A: \delta 5.74$ (s); $B: \delta 1.20 1.70$ (m, 4H), 1.85 2.50 (m, 4H), 5.35 5.94 (m, 4H); $C: \delta 2.39$ (m, 8H), 5.60 (m, 4H); $D: \delta 1.54$ (s)
- (b) $A: \delta 1 \cdot 54$ (s); $B: \delta 2 \cdot 39$ (m, 8H), $5 \cdot 60$ (m, 4H); $C: \delta 1 \cdot 20 1 \cdot 70$ (m, 4H), $1 \cdot 85 2 \cdot 50$ (m, 4H), $5 \cdot 35 5 \cdot 94$ (m, 4H); $D: \delta 5 \cdot 74$ (s)
- (c) A: $\delta 1 \cdot 54$ (s); B: $\delta 1 \cdot 20 1 \cdot 70$ (m, 4H), $1 \cdot 85 + 2 \cdot 50$ (m, 4H), $5 \cdot 35 5 \cdot 94$ (m, 4H); C: $\delta 2 \cdot 39$ (m, 8H), $5 \cdot 60$ (m, 4H); D: $\delta 5 \cdot 74$ (s)
- (d) $A: \delta 5.74$ (s); $B: \delta 2.39$ (m, 8H), 5.60 (m, 4H); $C: \delta 1.20 1.70$ (m, 4H), 1.85 2.50 (m, 4H), 5.35 5.94 (m, 4H); $D: \delta 1.54$ (s)

6. The underlined H atoms in molecules A, B and C are, respectively

- (a) Enantiotopic, homotopic and diastereotopic
- (b) Diastereotopic, enantiotopic and hemotopic
- (c) Homotopic, enantiotopic and diastereotopic
- (d) Enantiotopic, diastereotopic and homotopic

- 9. The following is true for the complex of [18] crown-6 and KMnO₄: "
 - (a) Ion-dipole interaction, phase transfer catalyst, turns benzene purple
 - (b) π - π interaction, acid catalyst, turns benzene purple
 - (c) π - π interaction, phase transfer catalyst, turns benzene yellow
 - (d) Ion-dipole interaction, acid catalyst, turns benzene yellow

- 10. XeF_2 , $[XeF_5]^-$, SF_4 , $[BBr_4]^-$ have the following molecular shapes, respectively:
 - (a) Tetrahedral, pentagonal planar, trigonal bipyramid, linear
 - (b) Linear, trigonal bipyramid, pentagonal planar, tetrahedral
 - (c) Trigonal bipyramid, pentagonal planar, tetrahedral, linear
 - (d) Linear, pentagonal planar, trigonal bipyramid, tetrahedral

11.	Symmetry	operators	that	are	lost	in	going	from	NH ₃	to	NH ₂ Cl	аге

(b)
$$C_2$$
 and two σ_{ν}

(a) C_3 and two σ_v

(c)
$$C_3$$
 and one σ_v

(d)
$$C_2$$
 and one σ_{ν}

- 12. How many degrees of vibrational freedom do SiCl₄, BrF₃ and POCl₃ possess?
 - (a) 9, 6 and 9, respectively
 - (b) 6, 9 and 6, respectively
 - (c) 4, 3 and 4, respectively
 - (d) 5, 4 and 5, respectively

- 13. The number of framework electrons in the closo, nido and arachno series would equal to
 - (a) 2n+2, 2n+4 and 2n+6, respectively
 - (b) 2n+6, 2n+4 and 2n+2, respectively
 - (c) 2n+4, 2n+2 and 2n+6, respectively
 - (d) 2n+6, 2n+2 and 2n+4, respectively

- 14. The spin only magnetic moment, (µ_s) for Co(III) octahedral complex with weak field ligand and Co(II) in a tetrahedral would be
 - (a) 3.87 BM and 1.73 BM
 - (b) 0 BM and 1.73 BM
 - (c) 1.73 BM and 3.87 BM
 - (d) 4.90 BM and 3.87 BM

	(a)	Cr(II) and Mn(III) in weak ligand field
	(b)	Co(III) and Fe(II) in strong ligand field
	(c)	Cr(III) in weak ligand field
	(d)	Ni(II) and Fe(III) in weak ligand field
16.	Wh	ich of the following is a haem iron protein?
	(a)	Rubredoxin
	(b)	Transferrin
	(c)	Haemerythrin
	(d)	Cytochrome c

15. Jahn-Teller distortion would be exhibited by the following:

17. The ground state terms for Ti(III) and Mn(II) would, respectively, be

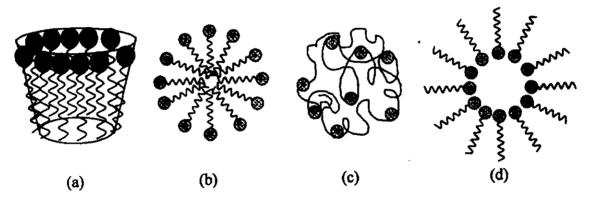
(a)
$3F$
 and 4F

(b)
$2D$
 and 6S

(c)
$4F$
 and 5D

(d)
$2D$
 and 4F

- 18. In computational chemistry, one calculates the lowest energy structure of molecule through variation principle using Hartree-Fock equation, $F_i \Phi_i = \varepsilon \Phi_i$. In this equation, the Fock operator (F_i) is expressed as
 - (a) $\mathbf{F}_i = \mathbf{h}_j + \Sigma_j (\mathbf{J}_j \mathbf{K}_j)$, with $\mathbf{h}_j = -(\hbar^2/2m_e) \nabla_j^2 \Sigma_n (\mathbf{Z}_n e/|\mathbf{R}_n \mathbf{r}_e|)$, and \mathbf{J} as Coulomb operator and \mathbf{K} as exchange operator, where i and j are indices for different electrons
 - (b) $F_i = h_i + \Sigma_i (J_i K_i)$, with $h_i = -(\hbar^2/2m_e) \nabla_i^2 \Sigma_n (Z_n e/|R_n r_e|)$, and J as Coulomb operator and K as exchange operator, where i and j are indices for different electrons
 - (c) $\mathbf{F}_i = \mathbf{h}_i + \Sigma_j (\mathbf{J}_j \mathbf{K}_j)$, with $\mathbf{h}_i = -(\hbar^2/2m_e) \nabla_i^2 \Sigma_n (\mathbf{Z}_n e/|\mathbf{R}_n \mathbf{r}_e|)$, and \mathbf{J} as Coulomb operator and \mathbf{K} as exchange operator, where i and j are indices for different electrons
 - (d) $F_i = h_i + \Sigma_i (J_i K_i)$, with $h_i = -(\hbar^2/2m_e) \nabla_j^2 \Sigma_n (Z_n e/|R_n r_e|)$, and J as exchange operator and K as Coulomb operator, where i and j are indices for different electrons

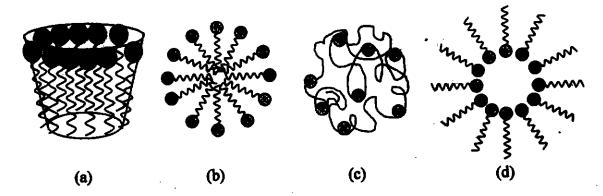

19.	If the estimated dipole moment and bond length of HCl are 1-1D and 1-28 Å, respectively, the percentage ionic character in HCl molecule is
	(a) 12·8%
	(b) 86·3%
	(c) 85·9%
	(d) 17·9%
	Maximum entropy of a mixture of hexane and heptane occur when they are mixed in a proportion of
	(a) 86 gm and 100 gm.
	(b) 86 gm and 1 gm
ij	(c) 1 gm and 100 gm
-	(d) 8.6 gm and 10 gm

- 17. The ground state terms for TMIII) and Mn(III) would respectively, be
 - (a) 3F and 4F
 - (b) 2D and 6S
 - (c) 4F and 5D
 - (d) 2D and 4F

- 18. In computational chemistry, one calculates the lowest energy structure of molecule through variation principle using Hartree-Fock equation, $F_i\Phi_i=e\Phi_i$. In this equation, the Fock operator (F_i) is expressed as
 - (a) $F_i = h_j + \Sigma_j (J_j K_j)$, with $h_j = -(h^2/2m_e) \nabla_j^2 \Sigma_n (Z_n e/|R_n r_e|)$, and J as Coulomb operator and K as exchange operator, where i and j are indices for different electrons
 - (b) $F_i = h_i + \Sigma_i (J_i K_i)$, with $h_i = -(\hbar^2/2m_e) \nabla_i^2 \Sigma_n (Z_n e/\{R_n r_e\})$, and J as Coulomb operator and K as exchange operator, where i and j are indices for different electrons
 - (c) $F_i = h_i + \Sigma_j (J_j K_j)$, with $h_i = -(h^2/2m_e) \nabla_i^2 \Sigma_n (Z_n e/|R_n r_e|)$, and J as Coulomb operator and K as exchange operator, where i and j are indices for different electrons
 - (d) $F_i = h_i + \Sigma_i (J_i K_i)$, with $h_i = -(h^2/2m_e) \nabla_j^2 \Sigma_n (Z_n e/|R_n r_e|)$, and J as exchange operator and K as Coulomb operator, where i and j are indices for different electrons

- 21. If at a given temperature, the equilibrium constant (K) of the reaction $NO(g) + \frac{1}{2}O_2(g) \rightleftharpoons NO_2(g)$ is $(K) = 4 \times 10^{-3}$, then the equilibrium constant (K') for the reaction $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$ is
 - (a) 4×10^{-3}
 - (b) 16×10^3
 - (c) 6.25×10^4
 - (d) 1.6×10^{-4}

22. Which of the following pictures is the most appropriate for reverse-micelle structure?



- 23. The wave function of a quantum particle is given by $\psi(x) = e^{-\alpha x}$. The expectation value, $\langle x \rangle$ in the range x = -1 to 1 is given by
 - (a) $(1/a) e^{-2a}$
 - (b) e^{-2a}
 - (c) $(1/a^2)e^{-2a}$
 - (d) $(1/a) e^{-a}$

- 24. A substance, when dissolved in water at 10^{-3} M concentration, absorbs 10% of an incident radiation in a path of 1 cm length. In order to absorb 90% of same radiation, the concentration of the solution should be
 - (a) $21.8 \times 10^{-3} M$
 - (b) $9.5 \times 10^{-3} M$
 - (c) $27.4 \times 10^{-3} M$
 - (d) $18 \times 10^{-3} M$

- 21. If at a given temperature, the equilibrium constant (K) of the reaction NO (g) + $\frac{1}{2}$ O₂ (g) \rightleftharpoons NO₂ (g) is (K) \rightleftharpoons 4 × 10⁻³, then the equilibrium constant (K') for the reaction 2NO₂ (g) \rightleftharpoons 2NO (g) + O₂ (g) is
 - (a) 4×10^{-3}
 - (b) 16×10^3
 - (c) 6.25×10^4
 - (d) 1.6×10^{-4}

22. Which of the following pictures is the most appropriate for reverse-micelle structure?

- 25. HCI molecule is well described by the Morse potential $(V = hcD_e[1 e^{-a(R Re)}]^2)$ with $D_e = 42940 \cdot 6 \text{ cm}^{-1}$, $\dot{v} = 2990 \text{ cm}^{-1}$ and $x_e v = 52 \text{ cm}^{-1}$ (x_e is the anharmonicity constant). The dissociation energy of HCl molecule is
 - (a) $39950 \cdot 6 \text{ cm}^{-1}$
 - (b) $41458 \cdot 6 \, \text{cm}^{-1}$
 - (c) 42940 · 6 cm⁻¹
 - (d) $40002 \cdot 6 \,\mathrm{cm}^{-1}$