Sardar Patel University Model Question Paper for Entrance Test for admission to Ph. D. (Mathematics)

Question	1	2	3	4	Total
Maximum Marks	10	40	25	25	100
Marks obtained					

Section - I

Answer the following:

- Who introduced the concept of a measurable set? 1)
- Show that $|\operatorname{re}(z)| + |\operatorname{im}(z)| \le \sqrt{2}|z|$. 2)
- 3) Show that a measurable set is nearly an open set.
- Show that the Lebesgue measure of Q is 0. 4)
- 5) What is the dimension of R over Q? (Where R is the vector space of all real numbers and Q is the field of all rational numbers.)
- 6) Define Euclidean ring and give one example of it.
- 7) State the Division Algorithm for polynomials over a field.
- 8) Is it true that co-countable topology on the set of natural numbers is compact? Justify your answer
- 9) State Bessel's equation of order n.

Section – II

(a)

(a) (b)

(c)

(d)

pole

5)

Select the correct answer from the given options.

1) Suppose $z^2 + \alpha z + \beta = 0$ has a pair of complex conjugate roots. Then α and β are real with _____

(a)
$$\alpha^2 < 4 \beta$$
 (b) $4 \alpha > \beta^2$ (c) $\alpha < 4 \beta$ (d) $4\alpha > \beta$

- 2) The values of z for which the function w defined by w = u + iv; $z = \sinh u \cos v + i \cosh u \sin v$ ceases to be analytic are _____ (b) ± 1 (c) $1 \pm i$ (d) $-1 \pm i$ (a) $\pm i$
- $w = e^{i\lambda} \frac{z-\alpha}{z\overline{\alpha}-1}$ maps $|z| \le 1$ onto _____. 3) $|w| \le 1$ (b) $|w| \le |\lambda|$ (c) |w| = 1(d) $|w| \ge |\lambda|$ (a)

4) Suppose z_1 , z_2 and z_3 are vertices of an equilateral triangle. Then $\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = \frac{1}{(b) - 3}$

$$z_3 \quad z_3 - z_1 \quad z_1 - z_2$$

1
 $z_1 - z_2$
1
 $z_1 - z_2$

(a) -1/2 (b) -1/4(b) z = 1 is a _____ of $\frac{z-2}{z+1} sin \frac{1}{z-1}$.

removable singularity

isolated essential singularity

non-isolated essential singularity

(a) 1 (b) 3 (c) 1/3
The residue of
$$\frac{4z+3}{z(z-3)(z+2)}$$
 in $0 < |z| < 1$ at $z = 0$ is _____

$$|<1 \text{ at } z = 0 \text{ is }$$
_____.
(c) $-1/3$

(c) 1/3

(d) none of these

0

(d)

[10]

[40]

7)	The number of zeros of $z^4 + 4$	$(1+i)_{\mathbf{z}} + 1 = 0$ in the	first quadrant is		
7)	The number of zeros of $z^4 + 4$ ((a) 2 (b) 0				none of these
8)	(a) 2 (b) 0 The value of $\int_0^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta =$	·			
	(a) 1 (b) π	τ (c)	$\pi/2$	(d)	none of these
9)	The value of $\int_{ z =2} \frac{\cos z}{z^3} dz = -$				
	(a) $-i\pi$ (b) is	π (c)	2πi	(d)	$-2\pi i$
10)	(a) $-i\pi$ (b) if Let $f(x) = \begin{cases} 1 & \text{if } x \text{ is ration} \\ -1 & \text{if } x \text{ is irration} \end{cases}$	$conal x \in [0, 1]$. Th	ien		
	(a) f is not Riemann Integrab	ole			
	(b) f is continuous only at irr(c) f is continuous everywhere				
	(d) f is Riemann Integrable				
11)	Let $f(x) = \frac{\tan [(\pi - \pi)]}{1 + [x]^2}$. Then _		·		
	(a) f exists for all x				
	(b) f exists for all x but f' do	es not exist at some	X		
	(c) f is discontinuous at some				
	(d) f is continuous for all x by	$\operatorname{ut} f''$ does not exist	at some x		
12)	Let $f(x) = \begin{cases} x \text{ if } x \text{ is ration} \\ -x \text{ if } x \text{ is irration} \end{cases}$	lonal. Then	·		
	(a) f is discontinuous at all x	except $x = 0$			
	(b) f is continuous				
	 (c) f' is positive for all x (d) none of these 				
13)					
	(a) 1 (b) 2	2 (c)		(d)	1/2
14)	Let $f(x) = [x]^2 - [x^2]$. Then			0	
	(a) all integers except 1(c) all integers except 0 and 1		all integers except all integers	0	
15)			-	r F (n	> 1). Then
	$\begin{array}{c} AB - BA _ \\ (a) \neq I \end{array}$	I (a)		(0	
16)			$= 0 \qquad (d)$ uch that $ \langle \mathbf{x}, \mathbf{y} \rangle =$		vll. Then
,	(a) x and y are linearly indep	bendent. (b)	x and y are ortho	ogona	
17)	(c) x and y are linearly deper Let U and V be finite dimension		-		aspactivaly
17)	Then dimension of the Hom(U,	-	i unitensions in ai		espectively.
10)	(a) $m + n$ (b) $m n$	· /	(d) m ⁿ		
18)	Let V be a finite dimensional ve of the following is not true?	ector space over a f	ield F and $T \in A($	V) be	onto. Which
	(a) T is one to one (b) T is	is bijective (c)	T is regular ((d) 7	「is singular
19)	Which of the following is not c	1 0		00707	ro torms
	(a) c_{00} , the space of all sequence (b) l^{∞} , the space of all bounded s			ionzei	
	(c) $C([0, 1])$, the space of all re-	al valued continuous		n [0, 1].
	(d) R^n , where R is the field of a	ll real numbers.			

- Modified Euler's method is used to solve 20)
 - (a) Ordinary Differential equation
 - (c) **Quadratic Equation**
- (b) Partial Differential equation
- (d) Transcendental equation
- is used to solve f(x) = 0 numerically.
- (a) **Bisection** method
- Gauss method (c)

21)

- (b) Euler's method
- (d) Simpson's method
- 22) Which of the following is not true?
 - (a) Every group of order 5 is abelian;
 - (b) Every cyclic group is abelian;
 - If G is a finite group and p divides o(G), then G has a subgroup of order p; (c)

(d)

- (d) Every group has at least one subgroup.
- Let $f: G \rightarrow H$ be a homomorphism with kernel K. Then 23)
 - (a) K is a subgroup of H;
- K is a normal subgroup of H; (b) Neither (i) nor (ii) is true.
- (c) Both (i) and (ii) are true; 24) Which of the following is true?
 - Caley's Theorem is only for abelian groups; (a)
 - (b) Caley's Theorem is only for finite groups;
 - (c) Caley's Theorem is only for finite cyclic groups;
 - Caley's Theorem is for all groups. (d)
- The polynomial $x^2 5$ is 25) reducible over Q;

(a)

- (b) solvable by radicals over Q;
- (c) not solvable by radicals over Q; (d) none.
- 26) Let $I = \{1, 2\}$ and $\phi(x) = \inf\{|x-y| : y \in I\}$ ($x \in R$). Then
 - (a) φ is not continuous at 1;
- (b)
- (c) ϕ is not continuous at 1 and 2; (d)
- 27) Which of the following topological spaces is compact?
 - an infinite set with co-finite topology; (a)
 - (b) (0, 1] with usual topology;
 - $\{1, 1/2, 1/3, \ldots\}$ with usual topology; (c)
 - An infinite set with co-countable topology. (d)
- 28) The set of all limit points of Z in R with usual topology is
 - (a) Φ (b) Z (c) (d) 0
- 29) Let R_1 be the real line with lower limit topology. Then
 - R₁ is compact; (b) R₁ is connected; (a)
 - R₁ is separable; (d) R₁ is metrizable.
- 30) Let Y be a subspace of a metric space X.
 - If X is compact, then Y is compact; (a)
 - (b) If X is complete, then Y is complete;
 - (c) If X is connected, then Y is connected;
 - (d) None.

(c)

- 31)
- If $I[y(x)] = \int_{a}^{b} f(x, y, y') dx$ has an extremum, then (a) $\frac{\partial f}{\partial x} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0;$ (b) $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0;$ (c) $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0;$ (d) $\frac{\partial f}{\partial y'} \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0;$
- The extremum of $I[y(x)] = \int_{1}^{2} (1 + x^{2}y')y'dx$ with y(1) = 1 and y(2) = 0 is 32)
 - (b) y(x) = 2/x 2;(a) y(x) = 2/x - 1;
 - (c) y(x) = 2/x + x;(d) None.

 ϕ is not continuous at 2; None R

33)	The multi-integration $\int_a^x \int_a^u \int_a^t f(s) ds dt du =$ (a) $\int_a^x f(z) dz;$ (b) $\int_a^x (x-z)^2 f(z) dz;$ (c) $\frac{1}{2} \int_a^x (x-z)^2 f(z) dz;$ (d) None.							
	(c) $\frac{1}{2}\int_{a}^{x}(x-z)^{2}f(z)dz;$ (d) None.							
34)	Define $f: \mathbb{R}^2 \to \mathbb{R}$ as $f(x, y) = \sqrt{ xy }$. Then (a) f is differentiable at 0; (b) f is continuously differentiable at 0; (c) Both (i) and (ii) are trues (d) Naider (i) non (ii) is true.							
35)	(a) 1 (b) -2 (c) 2 (d) -1							
36)	Which of the following is 1-dimensional wave equation? (a) $\frac{\partial u}{\partial t} = c^2 \frac{\partial u}{\partial x}$ (b) $\frac{\partial u}{\partial t} = 0$ (c) $\frac{\partial u}{\partial x} = c^2 \frac{\partial^2 u}{\partial x^2}$ (d) $\frac{\partial u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$							
37)	The solution of $(y - z)p + (z - x)q = x - y$ is (a) $f(x + y + z) = xyz$ (b) $f(x^2 + y^2 + z^2) = xyz$ (c) $f(xyz) = x^2 + y^2 + z^2$ (d) $x + y + z = 0$							
38)	(c) $f(xyz) = x^2 + y^2 + z^2$ (d) $x + y + z = 0$ Which of the following is a second order linear differential equation?							
	(a) $\left(\frac{dy}{dx}\right)^2 + xy = x$ (b) $x^2 \frac{d^2 y}{dx^2} + y = x^2$ (c) $\frac{d^2 y}{dx^2} + y^2 = x^2$ (d) $\frac{d^2 y}{dx^2} + y \frac{dy}{dx} = x$							
39)	The solution of differential equation $D^2y + 4y = 0$; $D \equiv \frac{d}{dx}$ is							
	(a) $y = e^{-2x} + e^{2ix}$ (b) $y = e^{4x} + e^{-4x}$ (c) $y = \cos 2x + \sin 2x$ (d) $y = \cos 4x - i \sin 4x$							
40)	If p is generalized momentum and q is generalized coordinate then $[p,q] = $ (a) 1 (b) -2 (c) 2 (d) -1							
	on – III	[25]						
1)	Suppose $f(z)$ is analytic for all finite values of z and $ f(z) = c z ^k$ as $ z \to \infty$ for some $k \ge 1$ and for some $c > 0$. Then what is $f(z)$? Justify your answer.							
2)	Show that every measurable function is nearly equal to a continuous function.							
3)	Let V be a finite dimensional vector space over a field F and T : V \rightarrow V be a linear transformation. Show that T is one to one iff T is onto.							
4)	Solve: $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4y = 0.$							
5)	Describe the method of solving Laplace's equation in two dimensions.							
Secti	on – IV	[25]						
1)	Is it true that the Lebesgue integral of a measurable function generates a signed measure? Justify your answer.							
2)	Let G be a group with $o(G) = p^2$, where p is a prime number. Then prove that G must be abelian.							
3)	Prove that every metric space is normal.							
4)	Find the extremum of $I[y(x)] = \int_a^b y \sqrt{1 + {y'}^2} dx.$							
5)	N N							

find energy function. Is it conserved? Why?