SRI PADMAVATHI MAHILA VISVAVIDYALAYAM::TIRUPATI (Women's University) M.Phil./Ph.D. Entrance Test - September, 2012

DEPARTMENT OF APPLIED MATHEMATICS

Time: 3 Hrs

Answer any **Five** questions

Question No. 1 is compulsory

All questions carry equal marks $(5 \times 20=100)$

Max.Marks:100

- (a) Define a Homomorphism between two groups. If G and H be two groups with identities e and e' respectively and let φ : G → H is a homomorphism then prove that (i) φ (e) = e' (ii) φ (x⁻¹) = (φ(x))⁻¹ for each x ∈ G
 - (b) Define a metric space and give an example. Show that the union of arbitrary open sets is open
 - (c) Define the continuity of a function in a metric space. Prove that the continuous image of a compact set is compact.
- 2. (a)Show that a finite integral domain is a ring.
 - (b) Define a vector space. Prove that the set of all real valued continuous functions defined in the open interval (0, 1) is a vector space over the field of real numbers, with respect to the operations of addition and scalar multiplication defined as (f + g) (x) = f(x) + g(x)

(a f) (x) = a f(x), a is real with 0 < x < 1

- (a) Let X be a non-empty set. Show that the class of subsets of X consisting of empty set φ and all sets whose complements are countable, is a topology on X
 - (b) Let X be second countable space. If a non empty open set G in X is represented as the union of a class $\{G_i\}$ of open sets then prove that G can be represented as a countable union of G_i 's.

4. Use two phase simplex method to minimize z = 6x + 21y

subject to the constraints: $x + 2y \ge 3$, $x + 4y \ge 4$, $x \ge 0, y \ge 0$.

5. Solve the following transportation problem by Vogel's Approximation method

	То			Available	
	5	8	3	6	30
From	4	5	7	4	50
	6	2	4	6	20
Demand	30	40	20	10	

6. (a) Define an analytic function. Show that $f(z) = e^{z}$ is analytic everywhere in the complex plane and find f'(z).

(b) Show that the Mobius transformation w = 1/z is circle preserving

7. (a) State and prove Cauchy residue theorem

(b) Evaluate $\int_{C} \frac{z^2 + 4}{z - 3} dz$ where C : |z| = 5

8. (a) Use regula-falsi method to compute a real root of the equation $x^2 - 9x + 1 = 0$ if the root lies between 2 and 4

(b) Use fourth order Runge-Kutta method to solve the equation $10\frac{d y}{d x} = x^2 + y^2$,

y (0) = 1 and find y in the interval $0 \le x \le 0.4$ taking h = 0.1