Notation and Conventions

$\mathbb{Z}=$ set of integers
$\mathbb{N}=$ set of natural numbers
$\mathbb{Q}=$ set of rational numbers
$\mathbb{R}=$ set of real numbers
$\mathbb{C}=$ set of complex numbers
$\mathbb{R}^{n}=$ Euclidean space of dimension n

For a natural number n, the product of all the natural numbers from 1 upto n is denoted by n !
$[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$ for real numbers a and b with $a<b$.
$(a, b)=\{x \in \mathbb{R}: a<x<b\}$ for real numbers a and b with $a<b$.

For a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}, f^{\prime}$ denotes its derivative.

For any natural number $n, \mathbb{Z} / n \mathbb{Z}$ denotes the ring of integers modulo n.

Subsets of \mathbb{R}^{n} are assumed to carry the induced topology and metric.

PART A

1. Consider the sequence $\left\{x_{n}\right\}$ defined by $x_{n}=\frac{[n x]}{n}$ for $x \in \mathbb{R}$ where [.] denotes the integer part. Then $\left\{x_{n}\right\}$
(a) converges to x.
(b) converges but not to x.
(c) does not converge
(d) oscillates
2. $\lim _{x \rightarrow 0} x \sin \left(1 / x^{2}\right)$ equals
(a) 1 .
(b) 0 .
(c) ∞.
(d) oscillates
3. Let A be a 5×5 matrix with real entries, then A has
(a) an eigenvalue which is purely imaginary.
(b) at least one real eigenvalue.
(c) at least two eigenvalues which are not real.
(d) at least 2 distinct real eigenvalues.
4. The groups Z_{9} and $Z_{3} \times Z_{3}$ are
(a) isomorphic
(b) abelian
(c) non abelian
(d) cyclic
5. The differential equation

$$
\frac{d y}{d x}=y^{\frac{1}{3}}, y(0)=0
$$

has
(a) a unique solution
(b) no nontrivial solution
(c) finite number of solutions.
(d) infinite number of solutions.
6. The function $f_{n}(x)=n \sin (x / n)$
(a) does not converge for any x as $n \rightarrow \infty$.
(b) converges to the constant function 1 as $n \rightarrow \infty$.
(c) converges to the function x as $n \rightarrow \infty$.
(d) does not converge for all x as $n \rightarrow \infty$.
7. The equation $x^{22} \equiv 2 \bmod 23$ has
(a) no solutions.
(b) 23 solutions.
(c) exactly one solution.
(d) 22 solutions.
8. The sum of the squares of the roots of the cubic equation $x^{3}-4 x^{2}+6 x+1$ is
(a) 0 .
(b) 4 .
(c) 16 .
(d) none of the above.
9. The function $f(x)$ defined by

$$
f(x)= \begin{cases}a x+b & x \geq 1 \\ x^{2}+3 x+3 & x \leq 1\end{cases}
$$

is differentiable
(a) for a unique value of a and infinitely many values of b.
(b) for a unique value of b and infinitely many values of a.
(c) for infinitely many values of a and b.
(d) none of the above.
10. Let $m \leq n$ be natural numbers. The number of injective maps from a set of cardinality m to a set of cardinality n is
(a) m !
(b) n !
(c) $(n-m)$!
(d) none of the above.
11. For any real number c, the polynomial $x^{3}+x+c$ has exactly one real root.
12.

$$
e^{\sqrt{2}}>3
$$

13. A is 3×4-matrix of rank 3 . Then the system of equations,

$$
A x=b
$$

has exactly one solution.
14. $\log x$ is uniformly continuous on $\left(\frac{1}{2}, \infty\right)$.
15. If A, B are closed subsets of $[0, \infty)$, then

$$
A+B=\{x+y \mid x \in A, y \in B\}
$$

is closed in $[0, \infty)$.
16. The polynomial $x^{4}+7 x^{3}-13 x^{2}+11 x$ has exactly one real root.
17. The value of the infinite product

$$
\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)
$$

is 1 .
18. Consider the map T from the vector space of polynomials of degree at most 5 over the reals to $\mathbb{R} \times \mathbb{R}$, given by sending a polynomial P to the pair $\left(P(3), P^{\prime}(3)\right)$ where P^{\prime} is the derivative of P. Then the dimension of the kernel is 3 .
19. The derivative of the function

$$
\int_{0}^{\sqrt{x}} e^{-t^{2}} d t
$$

at $x=1$ is e^{-1}.
20. The equation $63 x+70 y+15 z=2010$ has an integral solution.
21. Any continuous function from the open unit interval $(0,1)$ to itself has a fixed point.
22. There exists a group with a proper subgroup isomorphic to itself.
23. The space of solutions of infinitely differentiable functions satisfying the equation

$$
y^{\prime \prime}+y=0
$$

is infinite dimensional.
24. The series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}
$$

diverges.
25. The function

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ x & \text { if } x \text { is irrational }\end{cases}
$$

is not continuous anywhere on the real line.

PART B

1. Let A be a 2×2-matrix with complex entries. The number of 2×2-matrices A with complex entries satisfying the equation $A^{3}=A$ is infinite.
2. In the ring $\mathbb{Z} / 8 \mathbb{Z}$, the equation $x^{2}=1$ has exactly 2 solutions.
3. There are n homomorphisms from the group $\mathbb{Z} / n \mathbb{Z}$ to the additive group of rationals \mathbb{Q}.
4. A bounded continuous function on \mathbb{R} is uniformly continuous.
5. The symmetric group S_{5} consisting of permutations on 5 symbols has an element of order 6 .
6. Suppose $f_{n}(x)$ is a sequence of continuous functions on the closed interval $[0,1]$ converging to 0 pointwise. Then the integral

$$
\int_{0}^{1} f_{n}(x) d x
$$

converges to 0 .
7. There is a non-trivial group homomorphism from S_{3} to $\mathbb{Z} / 3 \mathbb{Z}$.
8. If A and B are 3×3 matrices and A is invertible, then there exists an integer n such that $A+n B$ is invertible.
9. Let P be a degree 3 polynomial with complex coefficients such that the constant term is 2010 . Then P has a root α with $|\alpha|>10$.
10. Suppose a box contains three cards, one with both sides white, one with both sides black, and one with one side white and the other side black. If you pick a card at random, and the side facing you is white, then the probability that the other side is white is $1 / 2$.
11. There exists a set $A \subset\{1,2, \cdots, 100\}$ with 65 elements, such that 65 cannot be expressed as a sum of two elements in A.
12. Let S be a finite subset of \mathbb{R}^{3} such that any three elements in S span a two dimensional subspace. Then S spans a two dimensional space.
13. Any non-singular $k \times k$-matrix with real entries can be made singular by changing exactly one entry.
14. Let f be a continuous integrable function of \mathbb{R} such that either $f(x)>0$ or $f(x)+f(x+1)>0$ for all $x \in \mathbb{R}$. Then $\int_{-\infty}^{\infty} f(x) d x>0$.
15. A gardener throws 18 seeds onto an equilateral triangle shaped plot of land with sides of length one metre. Then at least two seeds are within a distance of 25 centimetres.

