Notation and Conventions

 $\mathbb{Z} = \text{set of integers}$ $\mathbb{N} = \text{set of natural numbers}$ $\mathbb{Q} = \text{set of rational numbers}$ $\mathbb{R} = \text{set of real numbers}$ $\mathbb{C} = \text{set of complex numbers}$ $\mathbb{R}^n = \text{Euclidean space of dimension } n$

For a natural number n, the product of all the natural numbers from 1 upto n is denoted by n!

 $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ for real numbers a and b with a < b.

 $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ for real numbers a and b with a < b.

For a differentiable function $f : \mathbb{R} \to \mathbb{R}, f'$ denotes its derivative.

For any natural number n, $\mathbb{Z}/n\mathbb{Z}$ denotes the ring of integers modulo n.

Subsets of \mathbb{R}^n are assumed to carry the induced topology and metric.

PART A

- 1. Consider the sequence $\{x_n\}$ defined by $x_n = \frac{[nx]}{n}$ for $x \in \mathbb{R}$ where $[\cdot]$ denotes the integer part. Then $\{x_n\}$
 - (a) converges to x.
 - (b) converges but not to x.
 - (c) does not converge
 - (d) oscillates
- 2. $\lim_{x \to 0} x \sin(1/x^2)$ equals
 - (a) 1.
 - (b) 0.
 - (c) ∞ .
 - (d) oscillates
- 3. Let A be a 5×5 matrix with real entries, then A has
 - (a) an eigenvalue which is purely imaginary.
 - (b) at least one real eigenvalue.
 - (c) at least two eigenvalues which are not real.
 - (d) at least 2 distinct real eigenvalues.
- 4. The groups Z_9 and $Z_3 \times Z_3$ are
 - (a) isomorphic
 - (b) abelian
 - (c) non abelian
 - (d) cyclic
- 5. The differential equation

$$\frac{dy}{dx} = y^{\frac{1}{3}}, y(0) = 0$$

has

- (a) a unique solution
- (b) no nontrivial solution
- (c) finite number of solutions.
- (d) infinite number of solutions.

- 6. The function $f_n(x) = n \sin(x/n)$
 - (a) does not converge for any x as $n \to \infty$.
 - (b) converges to the constant function 1 as $n \to \infty$.
 - (c) converges to the function x as $n \to \infty$.
 - (d) does not converge for all x as $n \to \infty$.
- 7. The equation $x^{22} \equiv 2 \mod 23$ has
 - (a) no solutions.
 - (b) 23 solutions.
 - (c) exactly one solution.
 - (d) 22 solutions.
- 8. The sum of the squares of the roots of the cubic equation $x^3 4x^2 + 6x + 1$ is
 - (a) 0.
 - (b) 4.
 - (c) 16.
 - (d) none of the above.
- 9. The function f(x) defined by

$$f(x) = \begin{cases} ax + b & x \ge 1, \\ x^2 + 3x + 3 & x \le 1 \end{cases}$$

is differentiable

- (a) for a unique value of a and infinitely many values of b.
- (b) for a unique value of b and infinitely many values of a.
- (c) for infinitely many values of a and b.
- (d) none of the above.
- 10. Let $m \leq n$ be natural numbers. The number of injective maps from a set of cardinality m to a set of cardinality n is
 - (a) m!
 - (b) n!
 - (c) (n-m)!
 - (d) none of the above.

11. For any real number c, the polynomial $x^3 + x + c$ has exactly one real root.

12.

$$e^{\sqrt{2}} > 3$$

13. A is 3×4 -matrix of rank 3. Then the system of equations,

$$Ax = b$$

has exactly one solution.

- 14. log x is uniformly continuous on $(\frac{1}{2}, \infty)$.
- 15. If A, B are closed subsets of $[0, \infty)$, then

$$A + B = \{x + y \mid x \in A, y \in B\}$$

is closed in $[0, \infty)$.

- 16. The polynomial $x^4 + 7x^3 13x^2 + 11x$ has exactly one real root.
- 17. The value of the infinite product

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right)$$

is 1.

18. Consider the map T from the vector space of polynomials of degree at most 5 over the reals to $\mathbb{R} \times \mathbb{R}$, given by sending a polynomial P to the pair (P(3), P'(3)) where P' is the derivative of P. Then the dimension of the kernel is 3.

19. The derivative of the function

$$\int_0^{\sqrt{x}} e^{-t^2} dt$$

at x = 1 is e^{-1} .

- 20. The equation 63x + 70y + 15z = 2010 has an integral solution.
- 21. Any continuous function from the open unit interval (0, 1) to itself has a fixed point.
- 22. There exists a group with a proper subgroup isomorphic to itself.
- 23. The space of solutions of infinitely differentiable functions satisfying the equation

$$y" + y = 0$$

is infinite dimensional.

24. The series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

diverges.

25. The function

 $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{cases}$

is not continuous anywhere on the real line.

PART B

- 1. Let A be a 2×2 -matrix with complex entries. The number of 2×2 -matrices A with complex entries satisfying the equation $A^3 = A$ is infinite.
- 2. In the ring $\mathbb{Z}/8\mathbb{Z}$, the equation $x^2 = 1$ has exactly 2 solutions.
- 3. There are *n* homomorphisms from the group $\mathbb{Z}/n\mathbb{Z}$ to the additive group of rationals \mathbb{Q} .
- 4. A bounded continuous function on \mathbb{R} is uniformly continuous.
- 5. The symmetric group S_5 consisting of permutations on 5 symbols has an element of order 6.
- 6. Suppose $f_n(x)$ is a sequence of continuous functions on the closed interval [0, 1] converging to 0 pointwise. Then the integral

$$\int_0^1 f_n(x) dx$$

converges to 0.

- 7. There is a non-trivial group homomorphism from S_3 to $\mathbb{Z}/3\mathbb{Z}$.
- 8. If A and B are 3×3 matrices and A is invertible, then there exists an integer n such that A + nB is invertible.
- 9. Let P be a degree 3 polynomial with complex coefficients such that the constant term is 2010. Then P has a root α with $|\alpha| > 10$.
- 10. Suppose a box contains three cards, one with both sides white, one with both sides black, and one with one side white and the other side black. If you pick a card at random, and the side facing you is white, then the probability that the other side is white is 1/2.

- 11. There exists a set $A \subset \{1, 2, \dots, 100\}$ with 65 elements, such that 65 cannot be expressed as a sum of two elements in A.
- 12. Let S be a finite subset of \mathbb{R}^3 such that any three elements in S span a two dimensional subspace. Then S spans a two dimensional space.
- 13. Any non-singular $k \times k$ -matrix with real entries can be made singular by changing exactly one entry.
- 14. Let f be a continuous integrable function of \mathbb{R} such that either f(x) > 0 or f(x) + f(x+1) > 0 for all $x \in \mathbb{R}$. Then $\int_{-\infty}^{\infty} f(x) dx > 0$.
- 15. A gardener throws 18 seeds onto an equilateral triangle shaped plot of land with sides of length one metre. Then at least two seeds are within a distance of 25 centimetres.