Ph. D - Enter test. - science mathematics.

Con. 3209-12.

KK-2594

(3 Hours)

[Total Marks: 100 22/4/12

Section I

Answer all the 20 objective questions.

[40]

- 1. Let $f, g : \mathbb{R}^3 \longrightarrow \mathbb{R}$ be non-zero linear maps such that $\ker(f) \subseteq \ker(g)$.
 - (A) f = g = 0
 - (B) $\ker(g) = \ker(f)$
 - (C) $\frac{\ker(g)}{\ker(f)}$ is isomorphic to \mathbb{R}
 - (D) none of the above holds.
- 2. The dimension of the vector space consisting of all linear transformations from R5 to R is
- (A) 1 (B) 0 (C) 5
- (D) 6
- 3. The quotient ring $\frac{\mathbb{Z}_2[x]}{(x^2+x+1)}$ is
 - (A) a finite field
 - (B) not an integral domain
 - (C) an infinite field
 - (D) an integral domain but not a field.
- 4. Find a true statement below:
 - (A) $\mathbb{Q}(\sqrt{2})$ is isomorphic to $\mathbb{Q}(\sqrt{3})$ as fields
 - (B) $\mathbb{Q}(\sqrt{2})$ is isomorphic to $\mathbb{Q}(\sqrt{3})$ as vector spaces over \mathbb{Q}
 - (C) $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 2$
 - (D) $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{6})$.
- 5. Let $f: \mathbb{Z}_6 \longrightarrow \mathbb{Z}$ be a non-zero group homomorphism. Then
 - (A) f = 0
 - (B) f is surjective
 - (C) f is injective
 - (D) none of the above holds.
- 6. Let $A = \{\frac{1}{n}\sin(\frac{1}{n}) \mid n \in \mathbb{N}\}$. The find a true statement from below:
 - (A) A has one limit point and it is 1
 - (B) A has one limit point and it is -1
 - (C) A has one limit point and it is 0
 - (D) A has three limit points and they are 0, 1, -1.

7. Let $A = \{1, 2\} \subset \mathbb{R}$. Let $f(x) = \inf\{|x - a| \mid a \in A\} \ (x \in \mathbb{R})$. Then (A) f is not a continuous function (B) f is differentiable on $\mathbb{R} \setminus \{1, 2\}$ (C) f is differentiable on $\mathbb{R} \setminus \{3/2\}$ (D) f is differentiable on $\mathbb{R} \setminus \{1, 3/2, 2\}$. 8. Let $\mathcal{F} = \{ f : \mathbb{R} \longrightarrow \mathbb{R} \mid |f(x) - f(y)| \le C|x - y| \ \forall \ x, y \in \mathbb{R} \text{ for some constant } C \}.$ Find a true statement from below: (A) If $f \in \mathcal{F}$, then f is uniformly continuous on \mathbb{R} (B) If $f \in \mathcal{F}$, then f is differentiable on \mathbb{R} (C) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable, then $f \in \mathcal{F}$ (D) none of th above holds. 9. Find a true statement from below: (A) $n\log(1+\frac{1}{n^2}) \longrightarrow 1$ as $n \longrightarrow \infty$ (B) $n\log(1+\frac{1}{n+1}) \longrightarrow 1$ as $n \longrightarrow \infty$ (C) $(n+1)\log(1+\frac{1}{n})\longrightarrow 0$ as $n\longrightarrow \infty$ (D) $n^2 \log(1 + \frac{1}{n^2}) \longrightarrow 0$ as $n \longrightarrow \infty$. 10. Find the norm below with respect to which the space $\mathcal{C}([0,1])$ of continuous real valued functions on [0, 1] is complete: (A) $||f||_{\infty} = \sup\{|f(x)| \mid x \in [0,1]\}$ (B) $||f||_2 = (\int_0^1 f(x)^2 dx)^{1/2}$ (C) $||f||_1 = \int_0^1 |f(x)| dx$ (D) none of the above. 11. Let $f:[0,\pi]\longrightarrow \mathbb{R}$ be a continuous function. In which case below imply that f = 0? (A) $\int_0^\pi x^n f(x) dx = 0 \ \forall \ n \in \mathbb{N} \cup \{0\}$ (B) $0 = \int_0^\pi \cos(nx) f(x) dx \, \forall \, n \in \mathbb{N} \cup \{0\}$ (C) $\int_0^{\pi} \sin(nx) f(x) dx = 0 \,\forall n \in \mathbb{N} \cup \{0\}$ (D) $0 = \int_0^{\pi} (\cos(nx) + \sin(nx)) f(x) dx \,\forall n \in \mathbb{N} \cup \{0\}.$ 12. Find a true statement below: (A) $f(z) = \cos z$ ($z \in \mathbb{C}$) is bounded function. (B) There is an non-constant entire function with $f(\mathbb{C}) = \mathbb{R}$. (C) There exists a bounded non-constant entire function. (D) If f, g are entire functions such that $f(iy) = g(iy) \, \forall \, 0 < y < 1$, then f = g. 13. Which function below is uniformly continuous? (A) f(x) = 1/x (0 < x < 1) (B) $f(x) = x^3 \ (x \in \mathbb{R})$

(C) $f(x) = \sin^2(x) \ (x \in \mathbb{R})$ (D) $f(x) = \sin(1/x) \ (0 < x < 1)$

- 14. Let $A = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}$. Find a set below which is homeomorphic to A.
 - (A) $\{(x,y) \in \mathbb{R}^2 \mid xy = 0\}$

 - (B) $\{(x,y) \in \mathbb{R}^2 \mid x+y=0\}$ (C) $\{(x,y) \in \mathbb{R}^2 \mid x^2+y^2=1\}$ (D) $\{(x,y) \in \mathbb{R}^2 \mid x^2-y^2=1\}$
- 15. Let

$$f(z) = \frac{e^z + 1}{e^z - 1}$$

 $\forall z \in \mathbb{C}$. Then z = 0 is

- (A) a removable singularity of f
- (B) a pole of f of order 2
- (C) an essential singularity of f
- (D) a pole of f of order 1.
- 16. Let $\gamma:[0,\pi] \longrightarrow \mathbb{C}$ be the contour defined by $\gamma(s)=2e^{is} \ \forall \ s\in[0,\pi]$. Then $\int_{\gamma} \frac{z+1}{z} dz =$ (A) $i\pi$ (B) $3 + i\pi$ (C) $-4 + i\pi$ (D) 2π

- 17. Let $D = \{z \in \mathbb{C} \mid |z| < 1\}$. Let $f: D \longrightarrow \mathbb{C}$ be an analytic function such that f(0) = 0. Define $g(z) = \frac{f(z)}{2} \forall z \in D \setminus \{0\}$ and g(0) = f'(0). Then find the correct statement from below:
 - (A) g is not continuous at z=0
 - (B) z = 0 is a removable singularity of q
 - (C) g has a pole at z=0
 - (D) g is a meromorphic function.
- 18. Find a compact set below:
 - $(A) \{ A \in M_2(\mathbb{R}) \mid \det(A) = 1 \}$

 - (B) $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{1 \le i \le n} x_i^2 = 1\}$ (C) $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{1 \le i \le n} x_i = 1\}$ (D) $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 x_2 \dots x_n = 1\}$.
- 19. Find a true statement below:
 - (A) If A is a dense subset of a topological space X, then $X \setminus A$ is nowhere dense in X.
 - (B) If A is no-where dense subset of a topological space X, then $X \setminus A$ is dense in X.
 - (C) $\mathbb{R} \times \{0\}$ is a dense subset of $\mathbb{R} \times \mathbb{R}$
 - (D) $\{(x,x)\in\mathbb{R}^2\mid x\in\mathbb{R}\}\$ is a dense subset of $\mathbb{R}\times\mathbb{R}$.
- 20. The point in the plane 'x-y-z=0' in \mathbb{R}^3 which is nearest to the point (4, -1, 1) is
 - (A) (2,1,1) (B) (1,0,1) (C) (0,4,-4) (D) (5,2,3).

Section II

Answer any three questions.

[30]

- 1. Prove that any non-constant analytic map $f: \mathbb{C} \longrightarrow \mathbb{C}$ is an open map.
- 2. Prove that any compact subset of a Hausdorff topological space X is a closed subset of X.
- 3. Give an example of a sequence of real valued continuous functions $(f_n)_{n\in\mathbb{N}}$ defined on [0,1] satisfying the following properties:
 - (a) $\int_0^1 f_n(x) dx = 1 \forall n \in \mathbb{N}$ and
 - (b) $f_n(x) \longrightarrow 0$ as $n \longrightarrow \infty \forall x \in [0, 1]$.
- 4. Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear map such that the minimum polynomial f(X) of T is product of k many distinct linear factors for some $1 \le k \le n$. Then prove that T is a daigonalisable linear map.
- 5. Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuously differentiable function. Fix $p \in \mathbb{R}^n$. Prove that there exist constants r > 0 and M > 0 such that

$$|f(x) - f(y)| \le M||x - y||$$

for all $x, y \in \mathbb{R}^n$ satisfying ||x - p|| < r, ||y - p|| < r.

Section III

Answer any two questions.

[30]

- 1. Let G be a finite group. For $x \in G$, define its conjugacy class in G. Derive the conjugacy class equation for G. Deduce that a group of order p^2 is an abelian group where $p \in \mathbb{N}$ is any prime.
- 2. Let $f: \mathbb{R} \longrightarrow [0, \infty)$ be a Lebesgue measurable function. Prove that there exists a sequence of simple functions $(s_n)_{n\in\mathbb{N}}$ satisfying the following properties:
 - (a) $0 \le s_n(x) \le s_{n+1}(x) \ \forall \ n \in \mathbb{N}, \forall \ x \in \mathbb{R}$ and
 - (b) $s_n(x) \longrightarrow f(x)$ as $n \longrightarrow \infty$ for each $x \in \mathbb{R}$.
- 3. Show that a complex polynomial of degree $n \in \mathbb{N}$ has exactly n many zeroes in \mathbb{C}
- 4. Prove that ant isometry of \mathbb{R}^n is composite of at most n+1 many reflections.
