[RET/13/Test B

882

Chemistry

	Question Booklet No	
-	(To be filled up by the candidate by blue/black ball-point pen)	
Roll No.		
Roll No. (Wr	e the digits in words)	
Serial No. of	DMR Answer Sheet	************
Day and Dat	***************************************	
	(Signature of Invigit	ator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, Please ensure that you have got the correct booklet and it contains all the pages in correct sequence and no page/question is missing. In case of faulty Question Booklet, bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided.
- **4.** Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid-entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. This Booklet contains 40 multiple choice questions followed by 10 short answer questions. For each MCQ, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet. For answering any five short Answer Questions use five Blank pages attached at the end of this Question Booklet.
- **9.** For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit both OMR Answer Sheet and Question Booklet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- **14.** If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 19

FOR ROUGH WORK

Research Entrance Test - 2013

No. of Questions: 50

Time: 2 Hours

Full Marks: 200

Note: (i) This Question Booklet contains 40 Multiple Choice Questions followed by 10 Short Answer Questions.

- (ii) Attempt as many MCQs as you can. Each MCQ carries 3 (Three) marks. 1 (One) mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. If more than one alternative answers of MCQs seem to be approximate to the correct answer, choose the closest one.
- (iii) Answer only 5 Short Answer Questions. Each question carries 16 (Sixteen) marks and should be answered in 150-200 words. Blank 5 (Five) pages attached with this booklet shall only be used for the purpose. Answer each question on separate page, after writing Question No.

				Code 140 002
hem	istry		ention on earth takes	place over the :
1.	Most of the land precip	itation and evapor	(2) oceans and seas	F
8	(1) land masses		(4) subtropical latiti	
	(3) poles of the planet		(4) Subtropical latter	acer
2.	The downstream portion	on of a river:		
GW S	(1) generally becomes	more sluggish		
		Land Harrison	3 13	ad turbulence
	(2) gonerally is of high	her velocity, which	n is marked by reduc	ea turbulence
	(4) has lower dischars	ges than do upstre	am portions	
3.	Which of the following	is not a fatty acid	1 (
J.	(1) Stearic acid		(2) Tallitude acres	5 V
	(2) Olaic acid		(4) Phenyl acetic ac	cid
	Which of the followin	o compounds is no	ot an antibiotic?	
4.	(1) Popicillin	B 1	(Z) Cilibration -	11 4 -2
	(1) Penicillin		(4) Chloramphenic	col
	(3) Streptomycin The acceleration with	List a martiala	moves in a straight	line, according to the
5.	The acceleration with	which a particle	relogity of the par	ticle at a distance x
	$law v^2 = 4a(x \sin x +$	$\cos x$), v being the	velocity of the pur	ticle at a distance x
88	from a fixed point, is	•	(4)	(4) $2 ax \sin x$
	(1) 0	$2) 2 ax \cos x$	(3) $4 ax \cos x$	(4) Zux Siii x
6.	If $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} A \begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix}$	$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ then } t$		e
	$(1) \begin{bmatrix} 3 & -4 \\ 3/4 & -1 \end{bmatrix}$	e e	(2) $\begin{bmatrix} -13/4 & 3/6 \\ 5/4 & -1 \end{bmatrix}$	7
	(3) $\begin{bmatrix} -17/4 & 3/4 \\ -7/4 & -1/4 \end{bmatrix}$	1	$(4) \begin{bmatrix} 5/4 & 11/4 \\ 3 & -9/4 \end{bmatrix}$	_
7	. If the error in the m	easurement of rac	lius of sphere is 0.3%	6, then the percentage
-	error in the measure	ment of its volum	e is:	
	(1) 0.15%	(2) 0.6%	(3) 0.9%	(4) 0.03%
8		wise sambination	of two resistances is P . If $S = nP$, then	is S. When they are the minimum possible
	joined in parallel, u	le total resistance		
	value of n is:	(2) 4	(3) 2.1	(4) 0.89
	(1) 3	* 2		
	9. Mitochondria are as	sociated with the	(2) circulation	<u>s</u>
	(1) cellular digestic	on	(4) cellular respi	ration
	(3) protein synthes	is .	10.40 April 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	nos volume d'AP 307 587 3X
1	 In which parts of ey Retina 	es, rods and cone (2) Iris	(3) Cornea	(4) Lens
P	T/13/Test B/882	. (2	2)	

1	1. Ar wi col	n organic compoidth of the peak lumn was :	und exhibited HPL0 at its base was 13	C pea 0.8 s	nk at rete econd. T	ention the nu	time of 13 mber of p	.36 min. The plates in the
		201	(2) 401		601		(4) 801	
13	2. In Na	the volumetric til OH, the equivale	tration of 50.0 ml of ence point pH is atta	0.10(ined) M acetic at :	c acid y	vith 0.100	m standard
	(1)	8.73	(2) 5.27	(3)	4.16		(4) 4.76	ia.
	(Gi	$ven: Kw = 1 \times 10$	0^{-4} , Ka = 1.75×10^{-5})			10	
13	. The	e maximum buffe	r capacity is attained	d wh	en :	904 3	1 plan	
		Buffer ratio is gr				1 4	****	
	(2)	Buffer ratio is sm	naller than one			31.8	***	
	(3)	Buffer ratio is eq	ual to one				S as	20
			tween one and two			# #	190 100	
14.			n polarography to r	niera	ite:	. N		
		Migration curren		0-•		93	20	8
3		Residual current				23		
	(3) A	Adsorption curre	nt			*		
		Polarographic ma		*		. * 2	91	¥
15.		otrophic condition				*		
		lean water body	2 7			1.5		
		olluted water bo			2		si.	
85		farsh land	~ <i>,</i>		88	55	P <u>e</u>	
		olluted air	ä					
RET/1		B/882	(3)		2			D.T. 0
			\ - /					P. T. O.

6.	Electrostatic precipita	tor is used for removing
	(1) Total dissolved so	olid
	(2) Particulate Matte	rs
	(3) Smog	
	(4) Total organic car	bon
17.	Which of the followi	ng molecules has an S ₄ axis?
1 .	(1) CO ₂	(2) C_2H_2
	(3) BF_3	(4) SO ₄ ²⁻
	10000 945 10000 <u>20</u>	and complexes is chiral?
18.		ing complexes is chiral?
	(1) Cis-[PtCl ₂ (en)]	\ 1+
	(2) Cis-[RhCl ₂ (NH	3/4]
	(3) $[Ru(bipy)_3]^{2+}$	(P)
	(4) Fac-[Co (NO ₂) ₃	(dien)]
19	The unsymmetrica	Ti^{3+} (aq) is attributed to a single electronic transition e_8 , t_{28} . spectral band that suggests involvement of more than one
	states, may be attri	outed to:
		tion of the complex ion
	(C) (C) (E)	tortion in excited state
	(3) Jahn-Teller dis	tortion in ground state
	(4) Jahn-Teller dis	tortion in both ground and excited states
_	The number of fra	mework electron pairs present in B ₄ H ₁₀ is:
20	(1) Four	(2) Five (3) Seven (4) Ten
2	 Molecular sieves \u00e4 	elong to the class of :
	(1) Layered alum	
		onal aluminosilicates
		ional aluminosilicates
	(4) Crystalline al	uminosilicates having open structures
RI	ET/13/Test B/882	(4)

22	. T	he Russell-Saund	ers term of the	ne configur	ation, 4s ¹	is indicated	by:	
) ² S	(2) ¹ S		5) ⁵ P		5 D	
23.	. O	n the basis of traiscorrect?	ns-effect whi	ch of the fo	ollowing	statements o	an be conside	ered
	(1) Reaction of [P trans effect of C	t(NH ₃) ₄] ²⁺ w IT is greater	vith HCl g than that o	ives <i>tran</i> f NH ₃ .	s-[Pt Cl ₂ (NF	H_3) ₂] because	the
	(2)	Reaction of [Pt(effect of NH ₃ is	NH ₃) ₄] ²⁺ wit greater than	h HCl give that of Cl ⁻ .	s trans-[F	$[tCl_2(NH_3)_2]$	because the tr	ans
٠	(3)	Reaction of [Pto effect of Cl is g	$(NH_3)_4]^{2+}$ wireater than t	th HCl giv hat of NH ₃ .	es cis-[Pt	$\mathrm{Cl}_2(\mathrm{NH}_3)_2$] b	ecause the tra	ans
	(4)	Reaction of [Pt(effect of NH ₃ is	NH ₃) ₄] ²⁺ wit greater than	h HCl give that of Cl	es <i>cis-</i> [Pt	Cl ₂ (NH ₃) ₂] b	ecause the tra	ans
24.	Or	nly one of the follo	owing staten	nents is corr	rect, pred	lict the same	:	
ia Tr	(1)	A molybdenum to NH_3 .	-iron-sulphu	ır cluster ir	the nitr	ogenase enz	yme reduces	N ₂
	(2)	A molybdenum to N ₂ H ₄ .	-iron- sulphi	ır cluster ir	n the nitr	ogenase enz	yme reduces	N_2
ų į	(3)	A molybdenum- to NH ₄ ⁺ .	iron- sulphi	ır cluster ir	n the nitr	ogenase enz	yme reduces l	N_2
	(4)	A molybdenum- to N ₂ O.	iron- sulphu	ır cluster in	the nitro	ogenase enzy	me oxidizes l	N ₂
25.	Nap of A	ohthalene, when AlCl ₃ , gives mainl	treated with y,	acetyl chlo	oride in n	itrobenzene	in the presen	ce
	(1)	α- acetonaphthal	ene					
	(2)	β- acetonaphthal	ene			E		
	(3)	1, 2- diacetonaph	thalene		25	W		
	(4)	1, 4- diacetonaph	thalene		w.		W.	
ET/1:	3/Te	st B/882		(5)			P. T. 0	D .

26. Claisen reaction condensation reaction between:

- (1) Aliphatic aldehyde and aliphatic ketone
- (2) Aliphatic ester and aliphatic ketone
- (3) Aromatic aldehyde and aliphatic aldehyde
- (4) α- Halogeno ester and aliphatic aldehyde

27. Angular methyls numbering in chloresterol are

- (1) 16, 18
- (2) 17, 18
- (3) 18, 19
- (4) 18, 20

28. Which one is correct structure of pyridoxine (vitamin B₆)

(3)
$$CH_2OH$$
 CH_2OH $HO \longrightarrow CH_2OH$ $H_3C \longrightarrow N$ CH_2OH

29. Which one of the following mechanisms is involved in reaction of fluorobenzene with phenyl lithium to give biphenyl

- (1) Addition- elimination mechanism
- (2) Elimination addition mechanism
- (3) Concerted mechanism
- (4) Unimolecular mechanism

30.	Which of the following alkaloids has isoquinoline nucleus.
	(1) Morphine
	(2) Reserpine
	(3) Narcotine
	(4) Lysergic acid
31.	Thyroxine is
	(1) Harmone
	(2) Vitamin
	(3) Sulpha drug
	(4) Amino acid
32.	Lactose is composed of
	(1) Glucose units only
	(2) Glucose + fructose
	(3) Glucose + Arabinose
	(4) Glucose + Galactose
33.	The BET equation reduces to the Langmuir isotherm when P (the pressure of the gas in bulk) has the following relation with P^*
	(1) $P = P^*$ (2) $P << P^*$ (3) $P \le P^*$ (4) $P < P^*$
	Where P* is the saturated vapour pressure of adsorbate at the same temperature.
34.	For the photochemical reaction $H_2 + Br_2 = 2HB_r$ the rate is proportional to
	(1) $I_{abs}^{\frac{1}{2}}$ (2) I_{abs}
	(3) I_{abs} and $[H_2]$ (4) $I_{abs}^{\frac{1}{2}}$ and $[H_2]$
	where I_{abs} is the intensity of light obsorbed
ET/1	3/Test B/882 (7) P.T.O.

RET/13/Test B/882

35.	The basis function fo	r A ₂ IR of C _{2v} group	p is	
	(1) z^2	(2) xz	(3) yz	(4) ×y
36.		nearly 3.2 cm ⁻¹ .	What would	pectrum shows a constant be its rotational partition cm ⁻¹ ?
	(1) 500		(2) 250	а
	(3) 125		(4) 62.5	
37.	For electrochemical proportional to:	dissolution of a r	netal electrode	e, the current density (i) is
	(1) $\exp(\eta)$ and \sinh	(η)	20	
	(2) exp (η) and sin.	(η)	¥	
	(3) exp (η)			P
	(4) log (η)			
38.	The molecular we scattering method i intercept is proport	s calculated from t	macromolecul	the plot of $\left(\frac{\overline{C}}{T}\right)$ Vs \overline{C}_w . The
	(1) directly to \overline{M}_w			
	(2) inversely to \overline{M}	w		
	(3) directly to $\sqrt{\overline{M}}$	w	+0	
	(4) inversely to $\sqrt{\bar{h}}$	\overline{A}_w		
RET	7/13/Test B/882	(8	3)	

- **39.** The condition of spontaneity for a change in the state of the system at constant temperature is
 - (1) $\Delta G < 0$
 - (2) $\Delta G > 0$
 - (3) $\Delta A < 0$
 - (4) $\Delta A + W < 0$
- **40.** The H-atom transition $3d_{xy} \leftarrow 2p_z$ is:
 - (1) dipole allowed and z-polarized
 - (2) dipole allowed and x-polarized
 - (3) dipole allowed and y-polarized
 - (4) forbidden

Attempt any five questions. Write answer in 150-200 words. Each question carries 16 marks. Answer each question on separate page, after writing Question Number.

- 1. Deduce (a) cottrell equation and (b) polarographic equation for $0 + pH^{\dagger} + ne \rightleftharpoons R$
- 2. Differentiate between
 - (a) Van Deemter plots of HPLC and GC
 - (b) Master grating and Replica grating
 - (c) Plate theory and Rate theory
 - (d) Chronoamperometry and chronopotentiometry
- **3.** The ¹⁹F NMR spectrum of SF₄ compound (with two F atoms in equatorial positions and two F atoms in axial positions of the tbp skeleton) at room temperature shows a single peak; the peak broadens with lowering of temperature and splits into two separate triplets at -98°C. Give a detailed explanation.

- 4. Without referring to any data, indicate how many spin-allowed ligand-field electron transitions you would expect to observe for the following complexes:
 - -(i) VCL

(ii) CrO₄²⁻

(iii) $[Fe(H_2O)_6]^{2+}$

(iv) $[Cr(H_2O)_6]^{3+}$

(v) $[Ni(NH_3)_6]^{2+}$

(vi) [Fe(CN)₆]⁴⁻

(vii) [Co(H₂O)₆]²⁺

(viii) $[Mn(H_2O)_6]^{2+}$.

Assign the transitions

- **5.** Respond to the following with reference to a weak-field octahedral Cr(III) complex:
 - (i) Draw neatly Orgel energy level diagram clearly indicating the 'Terms' and the energy differences (in terms of D_q) between various states. Assign the possible d-d transitions.
 - (ii) Point out the 'mixing of states' if any, and discuss the effect of such mixing.
 In the event of structural distortion of the complex, predict the energy levels that are prone for splitting and the consequent changes in the spectrum.
- 6. How would you prepare the following heterocycles from acetophenone?

- **7.** What is Heck reaction? How does it occur? Describe in detail the mechanism involved is Heck reaction.
- **8.** (i) Suggest mechanism for the reaction:

$$COCI \xrightarrow{Et_3N} O$$

(ii) On the basis of Woodward-Hoffmann selection rule, predict the motion (conrotatory or disrotatory) and complete the reaction

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

- **9.** Describe the salient features of activated complex theory of reaction rates. Write the Eyring equation for rate coefficient and interpret it.
- **10.** Write Fermi Golden rule for interaction of rediation with matter and explain the terms in it. Obtain expression for Einstein's B-coefficient and basic criterion for a molecule to absorb radiation.

Roll No.:	

Roll No.:

KOH IVO.	:	***************************************
	•	***************************************

4	
D 71 37	***************************************
RAH NA	
MULL INU.	*****************************

NULL	INU.				
			1	-	 15

FOR ROUGH WORK