DI	T/T	1A/	$T_{\Delta 0}$	st B
IN	111	17/	IC	ot II

882

Chemistry

	*	Question Booklet No
	(To be filled up by the cand	didate by blue/black ball-point pen)
Rol	i No.	
	No. (Write the digits in words)	
2003 %	lal No. of OMR Answer Sheet	
Jay	and Date	(Signature of Invigilator)
-		NS TO CANDIDATES
	(Use only blue/black ball-point pen in the	e space above and on both sides of the Answer Sheet)
	correct booklet and it contains all the missing. In case of faulty Ques Superintendent/Invigilators immediately	Question Booklet, Please ensure that you have got the pages in correct sequence and no page/question is stion. Booklet, bring it to the notice of the ly to obtain a fresh Question Booklet.
	Card without its envelope.	or blank, inside the Examination Hall except the Admit
	shall not be provided.	ould not be folded or mutilated. A second Answer Sheet
	provided above.	Number of the Answer Sheet by pen in the space
	the top, and by darkening the circles Question Booklet Number and the Set N	
	on OMR sheet and Roll No. and OMR sl	s of Roll No., Question Booklet No. and Set No. (if any) sheet No. on the Question Booklet.
	taken as unfair means.	s to be verified by the invigilator, otherwise it will be
	For each MCQ, you are to record the appropriate circle in the corresponding guidelines given on the first page of the Cuestions use five Blank pages attached	pice questions followed by 10 short answer questions, correct option on the Answer Sheet by darkening the row of the Answer Sheet, by pen as mentioned in the Answer Sheet. For answering any five short Answerd at the end of this Question Booklet.
1.1	For each question, darken only one circle or darken a circle partially, the ans	cle on the Answer Sheet. If you darken more than one swer will be treated as incorrect.
	Note that the answer once filled in ink question, leave all the circles in the cor- zero marks).	k cannot be changed. If you do not wish to attempt a rresponding row blank (such question will be awarded
	of this Booklet.	page of the title cover and the blank page at the end
12	Deposit both OMR Answer Sheet and Q	Question Booklet at the end of the Test.
13	You are not permitted to leave the Exam	form of unfair means, he/she shall be liable to such

14 If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 15

FOR ROUGH WORK

Research Entrance Test - 2014

No. of Questions: 50

Time: 2 Hours

Full Marks: 200

Note: (i) This Question Booklet contains 40 Multiple Choice Questions followed by 10 Short Answer Questions.

- (ii) Attempt as many MCQs as you can. Each MCQ carries 3 (Three) marks.

 (One) mark will be deducted for each incorrect answer. Zero mark will be warded for each unattempted question. If more than one alternative nswers of MCQs seem to be approximate to the correct answer, choose the losest one.
- (iii) Answer only 5 Short Answer Questions. Each question carries 16 (Sixteen) narks and should be answered in 150-200 words. Blank 5 (Five) pages ttached with this booklet shall only be used for the purpose. Answer each question on separate page, after writing Question No.

hai	mietry		
	mistry		Code No. : 882
1.	Which of the following is not a greenhouse	gas?	
		Methane	
	(3) Sulphur dioxide (4)	Nitrogen	
2.	The saliva of mammals contains starch enzyme is:	splitting enzyme.	The name of that
	(1) Amylase (Ptyalin) (2)	Secretin -	
	(3) Lysozyme (4)	Mucin	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3.	Cytosine in DNA combines with:	*	
		Guanine	(4) Thiamine
4.	If Vectors $2i-j+k$, $i+2j-3k$, $3i+\lambda j+5k$ ar	e coplanar, then th	ne value of λ is
	(1)		(4) -5
5.	The value of $(-1+i\sqrt{3})^{3/2}$ is:		(1)
		$2+\sqrt{2}$	(4) $2-\sqrt{2}$
6.	The number of electrons contained in 1 Cou	lomb of charge eq	uals to :
	177		(4) 1.6×10^{19}
7.	A unit mass of solid is converted to liquid this process is the:	at its melting; th	e heat required for
194	(1) Specific heat (2)	Latent heat of va	porization
	(0) 7	External latent he	74 · · · · · · · · · · · · · · · · · · ·
8.	Granite is:		
	(1) a sedimentary rock (2)	a metamorphic re	ock
	(0)	a plutonic igneou	W105.
9.	Coal is a:		
	(1) C 1	Hydrothermal de	posit
		High-grade meta	
10.	Which one of the following gases is present some of the sun's ultraviolet light and present	nt in the stratosph	nere that filters out
	radiation damage to living things?		w// " " " " " " " " " " " " " " " " " "
	(1) Oxygen (2) Methane (3)	Ozone (4) Helium
ET/1	14/Test B/882 (2)	TH 30 88 899	
		· ·	v ⁱ

į.	11	Which of the follow	ving molecules/i	ons has an S_4 axis?	
8	a s	(1) CO ₂	(2) C_2H_2	$(3) BF_3$	(4) SO_4^{2-}
	12.	The number of ison	mers possible for	octahedral $[CoCl_2(en$	$(NH_3)_2$
٠.		(1) 1	(2) 2	(3) 3	(4) 4
1	3.	The configuration	and LFSE denote	d by t_{2g}^6 , 2.4 Δ_0 refers	to the complex species:
	-	(1) [W(CO) ₆]	(2) $[Fe(OH)_6]^{2+}$	(3) $[Fe(CN)_6]^{3-}$	(4) $[Cr(NH)_6]^{3+}$
	14	The number of ske	eletal electrons pr	esent in B_5H_9 is :	
		(1) 3	(2) 5	(3) 7	(4) 9
	15	The Russell-Saund momentum quant	lers term symbol um number (L, S)):,	he state with the angular
,		(1 (0, 5/2)	(2) (3,3/2)	(3) (2, 1/2)	(4) (1, 1)
*	16	If an octahedral I allowed electronic	Fe(II) complex has transition refers	s large paramagnetic to:	susceptibility, the spin-
		(1) d-d	$(2) \ \pi \to \pi^*$	(3) MLCT	4) LMCT
	17			D spectrum) is a plot	
		(1) Molar absorp	tion coefficient (E	against wavelength	
		(2) Difference of	ε for right & left-	rircularly polarized li	ght against wavelength
		(3) Difference of number	ε for right &	left-circularly polar	ized light against wave
		(4) e against path	length		
	н	Arhdt-Eistert syn	thesis involves or	ne of the following re	arrangement:
		(1) Curtius rearra	angement	(2) Von-Pechr	nann rearrangement
		(3 Lossen rearra	ngement	(4) Wolff rear	rangement
	41	The side product	during the indus	trial preparation of p	henol is :
		(1) Methanol		(2) Acetone	*
		(3) Diethyl ether		(4) Isopropyl	methyl ketone
	RE	/14/Test B/882		(3)	P.T.O.

20.	Upon treatment of D-glucose with NaOH, the product(s) formed will be:
- 1	(1) Sodiumgluconate
*** **	(2) L-Glucose
2 2	(3) Mixture of D-glucose and D-fructose
NA EN	(4) Mixture of D-glucose, D-fructose and D-mannose .
21.	Doebner synthesis is related to the synthesis of one of the following:
	(1) Indole (2) Imidazole (3) Quinoline (4) Isoquinolin
22.	Gilman's reagent act as:
	(1) Soft nucleophile (2) Hard nucleophile
	(3) Soft electrophile (4) Hard electrophile
23	Simon-Smith reaction is related with:
	40.01
88	(1) Carbene (2) N-Heterocyclic carbine
	(3) Nitrene (4) Xanthene
24.	Acetophenone can be converted into phenol by the reaction with:
	(1) M-CPBA followed by base catalysed hydrolysis
	(2) Con. HNO ₃
4, 50	(3) $I_2 + NaOH$
	(4) Aq. NaOH
25.	The maximum number of isomers for an alkene with molecular formula C_4H_8 is:
	(1) 5 (2) 4 (3) 2 (4) 3
26.	A moving electron has a wavelength of 1Å. The kinetic energy of the electron is doubled, the wavelength of the electron is now:
100	(1) 0.7071 Å (2) 2.0 Å
	(3) 0.5 Å (4) 1.4142 Å
RET/1	4/Test B/882 (4)
28 28	

27	Which of the following statements is <i>false</i> about fluorescence and phosphorescence?
	(1) Fluorescence is due to electronic transition from a singlet excited state to the ground electronic state
	(2) Fluorescence occurs in a longer time scale than phosphorescence
	(3) Phosphoresence is due to electronic transition from a triplet exited state to the ground electronic state
	(4) Interseptem crossing takes before phosphorescence
28.	The mean ionic molality of a 2:1 electrolyte is: (1) $4^{\frac{1}{3}}M$ (2) $M^{2/3}$ (3) $27^{1/4}M$ (4) 108 M
29.	In a first order reaction, if the time taken for completion of 50% of the reaction is t seconds, the time required for its completion of 99.9%, is:
	(1) 10t (2) 5t (3) 100t (4) 2t
30.	The wave function Ψ of a certain system is linear combination :
	$\psi = \sqrt{1/4} \ \psi_1 + \sqrt{3/4} \ \psi_2$
	Ψ_1 and Ψ_2 are energy eigen functions with eigen values (non degenerate) E_1 and
4.	E_2 respectively. What is the probability that the system energy will be observed
	to be E_1 ?
	(1) $\sqrt{\frac{3}{16}}$ (2) $\frac{3}{4}$ (3) $\frac{1}{4}$ (4) $\sqrt{\frac{1}{4}}$
31.	Which of the following thermodynamic relations is correct for 1 mole of an ideal
	gals?
	(1) $\left(\frac{\delta H}{\delta V}\right)_T = 0$ (2) $\left(\frac{\delta U}{\delta V}\right)_T = 0$ (3) $\left(\frac{\delta Cv}{\delta U}\right)_T > 0$ (4) $\left(\frac{\delta P}{\delta T}\right)_V = 0$
32.	The selection rule for EPR is:
a all la	(1) $\Delta V = \pm 1$ (2) $\Delta J = \pm 1$ (3) $\Delta M_I = \pm 1$ (4) $\Delta M_S = \pm 1$
33.	Which one is used to mitigate migration current?
	(1) Nitrogen (2) Triton-x-100
War a	(3) Supporting electrolyte (4) Mercury
RET	7/14/Test B/882 (5) P.T.O.
	wakaaka mwasalan a

34. The Randles Sevick equation is:

- (1) $i_p = (2.69 \times 10^5) n^{3/2} A D_0^{1/2} V^{1/2} C_0^*$
- (2) $i_p = (2.65 \times 10^5) n^{1/2} A D_0^{1/2} V^{1/2} C_0^*$
- (3) $i_p = (2.65 \times 10^5) n^{3/2} A D_0^{1/2} V C_0^*$
- (4) $i_p = (2.65 \times 10^5) n^{3/2} A^{1/2} DV^{1/2} C_0^{\bullet}$

35. In cyclic Voltmmmetry, the difference between E_{pa} and E_{pc} (Δ Ep), the steady state value for reversible electron-transfer process is :

(1) $\Delta \text{Ep} > 58/n \text{ mV}$

(2) $\Delta \text{Ep} < 58/n \text{ mV}$

(3) $\Delta Ep = 58/n \text{ mV}$

(4) $\Delta Ep = 0 \text{ mV}$

36. Which one is not an ideal detector in gas chromatorgraphy?

- (1) Electron capture detector
- (2) Thermal conductivity detector
- (3) Flame ionization detector
- (4) Photo-Voltaic cell

37. For non-polar analytes having molecules mass greater than 10⁴, one of the best HPLC technique is:

- (1) Ion-exchange chromatography
- (2) Liquid-liquid partition Chromatography
- (3) Liquid-bonded phase partition chromatography
- (4) Gel-permeation Chromatography

38. Polarographic maximum occurs due to:

- (1) Oxidation of Hg drop
- (2) Increasing migration current
- (3) Streaming motion of solution past Hg drop
- (4) The high viscosity of the solution

39. The best procedures for improving resolution between chromatographic peaks can be:

- (1) Increasing column length, decreasing band width
- (2) Decreasing column length, increasing band width
- (3) Increasing sample size, decreasing flow rate
- (4) Decreasing the amount of stationary phase, increasing the volume of mobile phase

40. The El Nino is due to:

- (1) Warming of waters of the eastern pacific ocean
- (2) Cooling of waters of the eastern pacific ocean
- (3) Condensation of waters of the eastern pacific ocean
- (4) Vapourization of waters of the eastern pacific ocean

Attempt any five questions. Write answer in 150-200 words. Each question carries 16 marks. Answer each question on separate page, after writing Question Number.

- 1. Describe the phenomenon of Trans effect and illustrate with two suitable examples.
- 2. What do you understand by base hydrolysis reactions? Explain the importance of ligands with acidic protons.
- Name the cluster present in the "nitrogenase enzyme". Describe the reduction of N_2 to NH_4^+ by the enzyme.
- 4. Why in S_N 2 reactions a nucleophile always attacks from the back side of the leaving group? Expain with suitable example.
- 5 Allyl chloride undergoes substitution by S_N1 mechanism, whereas n-propyl chloride reacts by S_N2 mechanism, explain.
- What do you understand by exchange current density and overpotential? What is their significance in an electrochemical reaction?
- 7 Explain Meissner effect giving and example.
- 8. What is concept of ensemble? Define microcanonical, canonical and grand canonical ensemble and write expression of canonical partition function.
- 9. Deduce the following

(a)
$$F = F_{1/2} - \frac{0.05916}{n} \log \frac{i}{(id-i)}$$

(b)
$$i = \frac{ADnF}{\delta}(C^* - C^0)$$

10. Detine maximum buffer capacity and find out the criteria of a buffer to possess maximum buffer capacity.

Roll No. :	***************************************		
Q. No. :			
E E		e d	
		. *	
			2.6

Roll No.

Q. No.

Q. No. :

Roll No. :		 , e, 1		
Q. No. :				
	· ×			
			e e	* 1

FOR ROUGH WORK