RET/13/Test B

746

Genetics & Plant Breeding

			9.	Question Booklet No	
¥0	(To be	filled up l	by the candidat	te by blue/black ball-point pen)	
Roll No.					
			,		
Serial No. o	f OMR An	swer She	et		,,,,
Day and Da	te		***************************************	(Signature of Invigilator)	

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, Please ensure that you have got the correct booklet and it contains all the pages in correct sequence and no page/question is missing. In case of faulty Question Booklet, bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid-entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. This Booklet contains 40 multiple choice questions followed by 10 short answer questions. For each MCQ, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet. For answering any five short Answer Questions use five Blank pages attached at the end of this Question Booklet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit both OMR Answer Sheet and Question Booklet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 15

FOR ROUGH WORK

Research Entrance Test – 2013

No. of Questions: 50

Time: 2 Hours

Full Marks: 200

Note: (i) This Question Booklet contains 40 Multiple Choice Questions followed by 10 Short Answer Questions.

- (ii) Attempt as many MCQs as you can. Each MCQ carries 3 (Three) marks.

 1 (One) mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. If more than one alternative answers of MCQs seem to be approximate to the correct answer, choose the closest one.
- (iii) Answer only 5 Short Answer Questions. Each question carries 16 (Sixteen) marks and should be answered in 150-200 words. Blank 5 (Five) pages attached with this booklet shall only be used for the purpose. Answer each question on separate page, after writing Question No.

Gene	etics and Plant Breeding		Code No. : 74
1.	One Horse Power (HP) is expressed in	n term of watt which	is
	(1) 720 (2) 786	(3) 746	(4) None of these
2.	Number of segments present in insect	t head is :	**
	(1) Two (2) Four	(3) Six	(4) Seven
3.	Deficiency symptom of sulphur first a	appears an :	
	(1) Younger leaves	(2) Older leaves	
	(3) Middle leaves	(4) None of these	•
4.	Protein content in lentil is:		
	(1) 18% (2) 25%	(3) 16%	(4) 20%
5.	Demonstration showing how to do th	ings is called :	
	(1) Method demonstration	(2) Result demon	stration
	(3) Training	(4) Frontline dem	nonstration
6.	Dithane M-45 is a :	18	×
	(1) Bactericide	(2) Insecticide	(•)
	(3) Fungicide	(4) Nematicide	**
7.	Jamunapari is a breed of:		[⊗] 4 ₆
	(1) Cow	(2) Goat	
	(3) Buffalo	(4) None of the al	bove
8.	Select the correct formula of urea:		**************************************
	(1) $H_2NCO_2NH_2$	(2) HNCONH	2 0
	(3) H_2NCONH_2	(4) H ₄ NCONH ₄	
9.	The measure of central tendency is:		
	(1) Median	(2) Mode	
	(3) Mean	(4) All of the above	ve
10.	On which of the following plant experiment?		
	(1) Gram (2) Maize	(3) Pea	(4) Rice
RET/1	3/Test B/746 (2)): *	a .

		4 988	**
11.	One of the principal possible orientati metaphase-I of translocation heterozygo	on of a ring of four chromosetes producing viable gametes:	omes at
	(1) Alternate orientation	9	
	(2) Adjacent-I orientation	100 a	
	(3) Adjacent-II orientation		
	(4) Non orientation of the centromer	es of two chromosomes in a	lternate
	positions in the ring	" opile?"	
	* ==		
12.	The oxidation of one molecule of NAD	H in mitochondria results in fo	rmation
	of:	34 access a acc	
	(1) Two molecules of ATP	e en altale	
	(2) Five molecules of ATP		
	(3) Three molecules of ATP	8.8	21
	(4) One molecule of ATP	a did	
		\$ 8	
13.	In RAPD, the primer consists of:	"Earli	
	(1) Ten nucleotides	o 74	*
	(2) Six nucleotides	5 5	
	(3) Twenty two nucleotides		
	(4) Single nucleotide		
	200 90 90 000 10	180 as g	
14.	The Dolly sheep was cloned at:	9	
	(1) University of California	ĸ	
	(2) Roslin Institute, Scotland		
	(3) Indian Agricultural Research Institu	ite	
	(4) Cambridge University		
45	Golden rice is rich in:	to the	
15.		(2) Vitamin C	
	(1) Beta Carotene		
31	(3) Protein	(4) Antioxidant	t.
16.	If 'q' is the selected number of indivindividuals in a population, the ratio q/	riduals and 'n' is the total nu n offers the estimate of :	mber of
	(1) Selection deferential	(2) Selection response	
•	(3) Selection intensity	(4) Selection pressure	\$
			P. T. O.
RET/	13/Test B/746 (3)		F. 1. U.
			•
<u>*</u>	1		#
	2 (4)	*	

17.	Significant deviation indicates:	on of regression	on coeffici	ent 'b' fro	m unity in Vr-Wr grap	h,
	(1) Presence of epi	stasis				
	(2) Absence of epis					
	(3) Presence of G x					
	(4) Presence of dor	ninance				
18.	In Line x Tester ana	llysis, tester sh	ould have	•		
	(1) Narrow genetic	base			62	
	(2) Broad genetic b	ase		1.8		
	(3) No maternal ef	fect				
	(4) Low heritability	y				
19.	Six parameter mode (1) Epistasis is pres (2) Epistasis is abso (3) Dominance is p (4) Dominance is a	sent ent resent	ns mean ai	nalysis is e	employed when :	
20.	Heritability of a cha	racter within	a nure line	ie ·		
	(1) Zero	(2) 100%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75%	(4) 50%	
21.	The probability that descent refers to:	it two genes a	it any locu	ıs in an ir	ndividual are identical b	y
	(1) Selection coeffic	rient	(2)	Inbreedir	ng coefficient	
	(3) Regression coef	ficient			on coefficient	
22.	Half sibs individual	s are related b	v common	iness of :		
	(1) One parent		120	Two pare	ents	
	(3) Three parents			Four pare		
23.	gene through radial	ion induced tr	egment of	a chromo n in whea	some with rust resistanc t from :	e
	(1) Aegilops umbellu		8			
	(2) Aegilops speltoid					
	(3) Agropyron interr					
	(4) Aegilops bicornis					
RET/1:	3/Test B/746		(4)			

24	The town addition degree was spined b	
24.	The term addition decay was coined b	(2) E.R. Sears
	(1) Riley and Kimber	(4) Driscoll
	(3) Unrau et al	(4) Driscon
25.	Who demonstrated that genes are local	ited in the chromosomes?
	(1) Morgan	(2) Meselson and Stahl
	(3) Chargaff	(4) Franklin
26.	Who had conducted the X-ray diff structure of DNA? (1) McClintock	raction studies to the discovery of the
	(2) R. Franklin	
	(3) Meselson and Stahl	· · · · · · · · · · · · · · · · · · ·
	(4) Chargaff	2
27.	Which of the following is not true of I	DNA?
	(1) A pairs with T and G pairs with C	##
	(2) Nitrogen bases are 0.34 nm apart	
	(3) The double helix is 2.0 nm wide	đ
	(4) The double helix is 3.4 nm wide	*
28.	The state of the s	ular variety, the most commonly used
	(1) Bulk method	(2) Pedigree method
	(3) Backcross method	(4) Pure line method
29.	Highest expression of heterosis is obse	erved in :
	(1) Single cross hybrid	(2) Double cross hybrid
	(3) Open pollinated variety	(4) Composite
30.	Commercial hybrid rice seed product	ion in India is mostly done through:
	(1) One line system	(2) Two line system
	(3) Three line system	(4) None of these
31.	Hardy-Weinberg Law is applicable fo	r maintenance of genetic purity in :
	(1) Inbreds	(2) Composites
	(3) Hybrids	(4) Pure lines
RET/1	3/Test B/746 (5) P. T. O.

32.	Sporophytic self-incompatibility is found (1) Wheat (3) Pea	(2)	: Mustard Sunflower	
33.	Under PPVFR Act 2001 farmers may sell(1) Certified Seed(3) Unbranded Seed	(2)	eir produce as : Breeder Seed Nucleus Seed	
34.	The technique used to reduce period of (1) Single seed descent (3) Transgressive Breeding	(2)	eding generations Double haploid Test Cross	is:
35.	Distant hybridization may be done thro (1) Ovule culture (3) Anther culture	(2)	: Embryo rescue Pollen culture	
36.	Transgressive segregants are the outcom (1) Segregation & recombination (2) Heterosis (3) Mutation (4) Pleiotropy	ne o	f :	i i
37. 38.	A particular allele can have different rather than a female. This phenomenon (1) Extranuclear inheritance (2) Genome imprinting (3) Sex-linkage (4) Prader-Willi syndrome Double trisomics is denoted as:			erited from a male
56.	(1) 2n+1 (2) 2n+1+1	(3)	2n+2	(4) 2n-1-1
39. RET/1	Both chloroplasts and mitochondria: (1) are found within the nucleus (2) have linear DNA (3) carry extranuclear genes (4) display a Mendelian pattern of inhe 3/Test B/746 (6)	erita	nce	

- 40. Which of the following is not needed for DNA replication?
 - (1) Ribosomes

(2) DNA

(3) Nucleotides

(4) Enzymes

ttempt any five questions. Write answer in 150-200 words. Each question carries marks. Answer each question on separate page, after writing Question Number.

- Alfred Hershey and Martha Chase gave additional evidence that DNA is the genetic material. With the help of suitable diagram, describe the experiment conducted by them to demonstrate that DNA is the genetic material.
- 2. Write about Sanger and Coulson (di-deoxy) technique of DNA sequencing.
- 3. Enlist the assumptions of diallel analysis and briefly describe the graphical analysis.
 - Briefly describe the constraints and opportunities of wide crosses in crop improvement.
- 5. Enlist the methods for identification of chromosomes involved in translocation heterozygotes and describe one of them in detail.
- Briefly describe the genetic basis of heterosis alongwith objections and explanations.
- 7. Discuss Transgenic Genetic Male sterility, its mechanisms and uses.
- **8.** Describe the mechanism for regulation of lactose operon in *Escherichia coli*. Discuss the inducible and repressible system operating in it.
- Differentiate between macro-mutations & micro-mutations. Describe the mutation breeding for crop improvement.
- 10. What is marker assisted selection? Describe QTL Mapping.

Roll	No.	:	***************************************

Roll No. :

Landing States	450.000	
10 ~ 11	A	* *************************************
15 (11)	INII.	English and the second
	1 100	* **********************************

D_UN.	4
Roll No.:	

Q. No.

Roll No.	:	***************************************

FOR ROUGH WORK