DE	11/4 4	Test B
KE	1/14/	1 est D

Mathematics

			# R #	Que	stion Bookle	t No		
¥	(To l	be filled up b	y the candida	ate by bi	ue/black ba	il-point p	en)	
Roll No							881) (5	
Roll No	(Write the c	ligits in woi	'ds)	***********	***************************************			
Serial No	o. bf OMR A	nswer Shee	et	***********	***************************************			***************
Day and	Date	***************************************			(Signature	of Invig	gliator)

INSTRUCTIONS TO CANDIDATES

Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

1. Within 10 minutes of the issue of the Question Booklet, Please ensure that you have got the correct booklet and it contains all the pages in correct sequence and no page/question is In case of faulty Question Booklet, bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.

2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit

Card without its envelope.

3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided.

4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space

provided above.

- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on DMR sheet and Roll No. and OMR sheet No. on the Question Booklet.

7. Any changes in the aforesaid-entries is to be verified by the invigilator, otherwise it will be

taken as unfair means.

8. This Booklet contains 40 multiple choice questions followed by 10 short answer questions. For each MCQ, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guilelines given on the first page of the Answer Sheet. For answering any five short Answer Questions use five Blank pages attached at the end of this Question Booklet.

9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.

10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).

11. For rough work, use the inner back page of the title cover and the blank page at the end

of this Booklet.

12. Deposit both OMR Answer Sheet and Question Booklet at the end of the Test.

13. You are not permitted to leave the Examination Hall until the end of the Test.

14. If a quandidate attempts to use any form of unfair means, he/she shall be liable to such puhishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 15

FOR ROUGH WORK

Research Entrance Test - 2014

No. of Questions: 50

Time . 1 Houre

Full Marks: 200

Note: (i) This Question Booklet contains 40 Multiple Choice Questions followed by 10 Short Answer Questions.

- (ii) Attempt as many MCQs as you can. Each MCQ carries 3 (Three) marks.

 1 (One) mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. If more than one alternative answers of MCQs seem to be approximate to the correct answer, choose the closest one.
- (ili) Answer only 5 Short Answer Questions. Each question carries 16 (Sixteen) marks and should be answered in 150-200 words. Blank 5 (Five) pages attached with this booklet shall only be used for the purpose. Answer each question on separate page, after writing Question No.

Mathematics		Code No. : 895
1. Which of the following is not a g	reenhouse gas ?	
(1) Carbon dioxide (2) Methane	(3) Sulphur dioxi	de (4) Nitrogen
2. The saliva of mammals contain enzyme is:	s starch splitting enzym	e. The name of that
(1) Amylase (Ptyalin) (2) Secre	tin (3) Lysozyme	(4) Mucin
3. Cytosine in DNA combines with		\.,', \.,'
(1) Adinosine (2) Uracil		(4) Thiamine
4. If Vectors $2i - j + k$, $i + 2j - 3k$, $3i$		
(1) -2 (2) -3	(3) -4	(4) -5
5. The value of $(-1+i\sqrt{3})^{3/2}$ is:		
(1) $\sqrt{2}$ (2) $2\sqrt{2}$	(3) $2 + \sqrt{2}$	(4) $2-\sqrt{2}$
6. The number of electrons contained	ed in 1 Coulomb of charge	
(1) 6.25×10^{17} (2) 6.25×10^{1}	8 (3) 6.25×10 ¹⁹	$(4) 1.6 \times 10^{19}$
7. A unit mass of solid is converted this process is the :	to liquid at its melting;	the heat required for
(1) Specific heat	(2) Latent heat of	vaporization
(3) Latent heat of fusion	(4) External laten	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8. Granité is :		
(1) a sedimentary rock	(2) a metamorphi	c rock
(3) a volcanic rock	(4) a plutonic ign	• J ** No pr
9. Coal is a:	\	
(1) Sedimentary rock	(2) Hydrotherma	denosit
(3) Low-grade metamorphic rock		- I 177 W
10. Which one of the following gase some of the sun's ultraviolet ligradiation damage to living things (1) Oxygen (2) Methane	s is present in the stratos ght and provides an effect	phere that filters out
velocity. After certain time,		rith uniform angular
(1) only angular velocity will be		
(2) only angular momentum will		
(3) both angular velocity and ang	guiar momentum will be o	hanged
(4) neither angular velocity nor a	ngular momentum will b	e changed

12.,	The geometrical equations of a rigid body having n generalized co-ordinates do
**	not contain time variable explicitly, then:
	(1) Hamilton function will be $H = T - V$
	(2) Hamilton function will be $H = T + V$
	(3) Lagrange function will be L = T + V
	(4) Hamilton characteristic function will be $A = 2T$, where T and V are kinetic
	and potential energy respectively.
13.	If p_r , q_r are momentum variables and generalized co-ordinates of a system,
1 10 -	then:
	(1) $p_r = \frac{\partial H}{\partial q_r}$, H is Hamilton function
	(2) $p_r + \frac{\partial T}{\partial q_r}$, T is kinetic energy
	OS. Cia Hamilton main singl function
	(3) $p_r + \frac{\partial S}{\partial q_r}$, S is Hamilton principal function
	(4) $p_r + \frac{\partial L}{\partial q_r}$, L is Lagrange function
4.4	
14.	The components of velocity of an incompressible fluid in the case of a two-dimensional flow at the point (x, y) are $(ax, -ay)$, where a is a constant. The
	- """
	equation of the stream line passing through the point (2, 2) is:
	(1) $xy = 1$ (2) $xy = 2$ (3) $xy = 3$ (4) $xy = 4$
15.	The image system for a source outside a circle consists of:
a	(1) an equal source at the inverse point and an equal source at the centre of the circle
	(2) an equal source at the inverse point and an equal sink at the centre of the circle
	(3) an equal sink at the inverse point and an equal source at the centre of the circle
	(4) an equal sink at the inverse point and an equal sink at the centre of the circle
16.	If σ_1, σ_2 and σ_3 are principal stresses at a point, then the first stress invariant
- 1	is:
	(1) $\sigma_1 + \sigma_2 + \sigma_3$ (2) $\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1$
	(3) $\sigma_1 \sigma_2 \sigma_3$ (4) $\sigma_1 \sigma_2^2 + \sigma_2 \sigma_3^2 + \sigma_3 \sigma_1^2$
17.	If a function $f: \emptyset \longrightarrow \emptyset$ is defined by:
	$f(z) = f(x+iy) = u(x,y) + iv(x,y) = x \ \forall z \in \mathbb{C},$
	where C is the set of complex numbers, then:
	1 20 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(1) $\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ do not exist at $z = 0$
	(2) Cauchy - Riemann equations are satisfied but f is not differentiable at $z = 0$
	(3) f is differentiable at $z = 0$
	(4) Cauchy - Riemann equations are not satisfied for any value of z
RET/1	4/Test B/895 (3) P.T.O

18.	For the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $\frac{1}{R} = \overline{\lim_{n \to \infty}} a_n ^{\overline{n}}$, $R \ne 1$, then	
	(1) the radius of convergence of this series is R^2	
	(2) $f(z)$ has no singularity on $ z = R$	
	(3) $f(z)$ has at least one singularity on $ z = R$	18
	(4) $f(z)$ has at least one singularity on $ z = \frac{R}{2}$	
19.	Let $f(x) = x, g(x) = x^2 \forall x \in [0,1]$	
25	If $\int_0^1 f dg = \mu(g(1) - g(0))$ then the value of μ is:	

20. A function $f:[0,1] \rightarrow \mathbb{R}$ is defined by:

$$f(x) = \begin{cases} 1, & \text{when } x \text{ is irrational in } [0,1] \\ 0, & \text{when } x \text{ is rational in } [0,1] \end{cases}$$

Then f is:

(1) Riemann as well as Lebesgue integrable over [0, 1]

(2) $\frac{1}{3}$

(2) Lebesgue integrable but not Riemann integrable over [0, 1]

(3) Neither Riemann nor Lebesgue integrable over [0, 1]

(4) Riemann integrable and Riemann integral of f over [0, 1] is 1.

21. Let (X, s, μ) be a measure space and f be an extended real-valued measurable function on X such that $\int_{C} f d\mu$ exists. Define V_f on s by:

$$V_f(E) = \int_E f \, d\mu \, \forall E \in s$$

Then V_f is:

(1) measure as well as signed measure on X

(2) measure but not signed measure on X

(3) signed measure but not measure on X

(4) neither measure nor signed measure on X

22. The series:

$$(1-x)^2 + x(1-x)^2 + x^2(1-x)^2 + \dots, \forall x \in [0,1]$$
 is:

(1) point-wise as well as uniformly convergent in [0, 1]

(2) not point-wise convergent in [0,1]

(3) point-wise but not uniformly convergent in [0,1]

(4) point-wise as well as uniformly convergent in $\left[\frac{1}{2},1\right]$

23.	Let G be a group of order p^n , $p = prime integer$, $n = positive integer$, then:
	(1) $O(Z(G)) < 1$ (2) $O(Z(G)) = 1$ (3) $O(Z(G)) > 1$ (4) $O(Z(G)) = p^n$
24.	The state of the s
25.	(1) $\mathbb{Z}_2 \times \mathbb{Z}_2 \cong \mathbb{Z}_4$ (2) $\mathbb{Z} \times \mathbb{Z}$ is cyclic (3) $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$ (4) $\mathbb{Z}_2 \times \mathbb{Z}_6 \cong \mathbb{Z}_{12}$ Non abelian groups of order 6 are :
	(1) 1 (2) 3 (3) 2 (4) 6
26.	frame of the party and the par
	(1) 4 (2) 5 (3) 8 (4) 6 Let Q be the field of rational numbers. Then the degree of $Q(\sqrt{3})$ over $Q(\sqrt{2})$
27.	Let Q be the field of rational numbers. Then the degree of $Q(\sqrt{3})$ over $Q(\sqrt{2})$
	(1) 4 (2) 10 (3) 6 (4) 2
28	
20.	If E_1 and E_2 are the splitting fields of the polynomials $x^2 + 3$ and $x^2 + x + 1$
	over the field of rationales Q, then:
20	(1) $E_1 \not\subset E_2$ (2) $E_2 \not\subset E_1$ (3) $E_1 = E_2$ (4) $E_1 \neq E_2$
29,	11 C Infection a satisfying v u = 0 is called a.
	(1) Poisson function (2) Gauss function (3) Green's function (4) Harmonic function
20	
30.	diamon, their which of the
	following is true?
*:	(1) $\int \Phi(x,t)dx = 0$ (2) $\int \Phi(x,t)dx = 1$ (3) $\int \Phi(x,t)dx = e^x$ (4) $\int \Phi(x,t)dx = \log x$
24	R^n R^n R^n
31.	Let a function $f: \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x) = x_1^2 + x_2^2$, then its Hessian matrix is
	given by:
, ^V	$\begin{bmatrix} 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 \end{bmatrix}$ $\begin{bmatrix} -2 & 0 \end{bmatrix}$
	(1) $\begin{bmatrix} 0 & 2 \\ 1 & -2 \end{bmatrix}$ (2) $\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$ (3) $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ (4) $\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$
32.	Which of the following points satisfy first order necessary condition for the
. 16. 7	optimization problem?
	Minimize $x_1^2 + \frac{1}{2}x_2^2 + 3x_2$
	subject to $x_1, x_2 > 0$
	56 INTO MINER AND AND S. NO. 10 NO. 1
	(1) $\begin{bmatrix} 0 & 3 \end{bmatrix}^T$ (2) $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$ (3) $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ (4) $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$
33.	Let d be feasible direction of $f: \mathbb{R}^n \to \mathbb{R}$ then directional derivative $\frac{\partial}{\partial d} f(x)$ at x
	is defined as:
	(1) $\lim_{t\to 0} \left[\frac{f(x+td)-f(x)}{t} \right]$ (2) $\lim_{t\to 0} \left[\frac{f(x-td)-f(x)}{t} \right]$
	(3) $\lim_{d\to 0} \left \frac{f(x+td)-f(x)}{d} \right $ (4) $\lim_{d\to 0} \left \frac{f(x-td)-f(x)}{d} \right $
- 4	$a \rightarrow 0$ $a \rightarrow 0$ $a \rightarrow 0$
RET/1	4/Test B/895 (5) P.T.O

34.	If primal of a linear programming problem is:	
-	Minimize $C^T x$	
	subject to $Ax = b, x \ge 0$	
	then its dual is given by:	
	(1) may $\lambda^T h$ subject to $\lambda^T A \leq C^T$. (2) min $\lambda^T h$, subject	t to $\lambda^T A = C^T$.
	(3) max $\lambda^T b$, subject to $\lambda^T A = C^T$. (4) min $\lambda^T b$, subject	et to $\lambda^T A \ge C^T$.
35.	Euler's equations of motion of a rigid body are used for:	
33.	(1) rotation under finite forces about frame of reference fixe	d in the space
	(2) rotation under finite forces about the frame of reference	fixed with the body
	(2) linear median under impulsive forces	11/100 11/11/11/11/11
51 N	(3) linear motion under impulsive forces	
00	(4) linear motion under finite forces	76 88 <u>1</u>
36.	The radius of convergence of the power series $\sum_{n=1}^{\infty} n^{n^2} z^{n^3}$ is	10 W 10 H
	n=1	
	(1) 1 (2) e (3) $\frac{1}{a}$	(4) e^2
	(1) 1 (2) e (3) $\frac{1}{e}$	(1) c
37.	$a^2 \sim a^2 = a^2 $	âz
0 7.	The solution of the equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$, where $z = f(x)$) and $\frac{\partial z}{\partial x} = g(x)$ on
	$\partial x^2 \partial y^2$	оy
3	y = 0, is given by:	
	(72) I (874) 21 N N N N N N N N N N N N N N N N N N	
	(1) $z(x,y) = \frac{1}{2} (f(x-y) + f(x+y)) + \frac{1}{2} \int_{x-u}^{x+y} g(u) du$	
	2 2 x-y	
	1. 1 x+y	
38: 75	(2) $z(x,y) = \frac{1}{2} (f(x-y) + f(x+y)) + \frac{1}{2} \int_{0}^{x-y} g(u) du$	
TV 1000 00		
	$1 \times 1 \times$	
9802	(3) $z(x,y) = \frac{1}{2} f(x-y) + \frac{1}{2} \int_{x-u}^{x+y} g(u) du$	9
	4-7	28
N)	$(4) \forall (x,y) \frac{1}{2} \left(f(x,y) \right) f(x,y) \frac{1}{2} \left(f(y) dy \right)$	A g
a 2	(4) $z(x,y) = \frac{1}{2} (f(x-y) + f(x+y)) + \frac{1}{2} \int_{-1}^{x+y} g(u) du$	f a "
38.	If the series $\sum_{n=0}^{\infty} C_n$ is convergent and $f(x) = \sum_{n=0}^{\infty} C_n x^n, x \in (-1, 1)$)
94	then $\lim_{x\to 1} f(x)$ is:	
		00
	(1) $1 + \sum_{n=0}^{\infty} C_n^2$ (2) $\sum_{n=0}^{\infty} C_n$ (3) $2 + \sum_{n=0}^{\infty} C_n$	(4) $3 + \sum_{n=1}^{\infty} C_n^3$
20	n=0 n=0 n=0	f enaces is called a :
39.		spaces is called a .
	(1) polyhedron (2) non-convex po	
	(3) convex polytope (4) concave polyto	op e
40.	The number of cyclic subgroups of order 10 of the group Z	100 × Z/25 are:
701	Time transport of all and paralle and and an all all all all and all all all all all all all all all al	100 20
	(1) 10 (2) 14 (3) 20	(4) 24
7 <u></u> 7		**************************************

Attempt any five questions. Write answer in 150-200 words. Each question carries 16 marks. Answer each question on separate page, after writing Question Number.

- 1. State and prove conservation law of energy using Lagrangian approach.
- 2. Find the equation of continuity in the spherical polar co-ordinates.
- 3. Prove that all possible norms defined on a finite dimensional vector space X over $K (= \mathbb{R} \text{ or } \mathbb{C})$ are equivalent.
- 4. Let (X, ζ) be a topological space and B be a sub collection of ζ . Prove that B is a base of ζ if and only if every ζ -open set is expressed as a union of members of B.
- 5. Let G be a group and let O(G) = pq, where p, q are distinct primes, p < q and $p \times (q-1)$. Show that G is cyclic.
- **6.** Let $f(x) \in F[x]$ be of degree $n \ge 1$. Then show that there is a finite extension E of F of degree at most n in which f(x) has n roots.
- 7. Show that two dimensional Laplace equation $\nabla^2 u = 0$ in polar co-ordinates takes the form:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

8. Consider the conjugate direction algorithm to find minimizer of:

$$f(x_1, x_2) = \frac{1}{2}x^T \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} x - x^T \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 with initial point $x^0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ and a conjugate direction $d^0 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, then find the minimizer at one iterate.

9. If a function $f:[a,b] \to \mathbb{R}^n$, $n \ge 1$, is continuous on [a,b] and differentiable on (a,b) then prove that there exists $c \in (a,b)$ such that:

$$||f(b)-f(a)|| \le (b-a)||f'(c)||$$

10. If (X, 11 11) is a normal linear space over a field K (= IR or C) and x be a non-zero vector in X then prove that there is a bounded linear functional F on X such that:

$$F(x) = ||x|| \text{ and } ||F|| = 1$$

Roll No. :	*******************		
10		7404.0 EE	

Q. No. :

Roll No.:	D	MT 5	i. 9	E ES 5
	Kou	IVO.	i	**********

Q. No. :

E		81 301 *:	e N					5	131 3		1		33
Q	. No. :			W 6 5	18		25		(t)			¥	ea.
i.	20			1673 - 1									100
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		#S (2)	•			is .	•.					8
- 14 6 - 14	2 2 E						(U) 					2 18	ы
976				18 18			24 2 21 24 2 21		,				407
	10 24	((5)				ae ge	e** 		5 G			報	
被								20	F 18		•		
19							Ĺ	25 ES	•	20	i i		έz -
£.									a di			8	8.
												26	
			-0						٠.,				0

Roll	NIA	
TIATE	TAN	

Q. No.:

Roll No.	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2 · · · · ·	
Q. No. :			1 As		
10 10 1140	8			**************************************	
	# # # # # # # # # # # # # # # # # # #		H 46 H		
8	** *** *** *** *** *** *** *** *** ***		e a ^r		Tests as

FOR ROUGH WORK