RET/13/Test B

986

Petroleum Geo-Science

			*	Question	n Booklet No.	**************	************
	(To b	e filled up by	the candidate	by blue/t	black ball-poi	int pen)	
Roll No.							
Roll No. (W	rite the di	gits in word	(ab				
			t				
Day and Da	te				*************	*****************	
					(Signa	ture of Invigi	lator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, Please ensure that you have got the correct booklet and it contains all the pages in correct sequence and no page/question is missing. In case of faulty Question Booklet, bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided.
- **4.** Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid-entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- **B.** This Booklet contains 40 multiple choice questions followed by 10 short answer questions. For each MCQ, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet. For answering any five short Answer Questions use five Blank pages attached at the end of this Question Booklet.
- **9.** For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit both OMR Answer Sheet and Question Booklet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- **14.** If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 15

FOR ROUGH WORK

Research Entrance Test - 2013

No. of Questions: 50

Time: 2 Hours

Full Marks: 200

Note: (i) This Question Booklet contains 40 Multiple Choice Questions followed by 10 Short Answer Questions.

- (ii) Attempt as many MCQs as you can. Each MCQ carries 3 (Three) marks. 1 (One) mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question. If more than one alternative answers of MCQs seem to be approximate to the correct answer, choose the closest one.
- (iii) Answer only 5 Short Answer Questions. Each question carries 16 (Sixteen) marks and should be answered in 150-200 words. Blank 5 (Five) pages attached with this booklet shall only be used for the purpose. Answer each question on separate page, after writing Question No.

1.	Most of the land precipitation and	l evaporati	on on earth takes place over the :
	(1) land masses		
	(2) oceans and seas		
	(3) poles of the planet		
	(4) subtropical latitudes		9
2.	The downstream portion of a rive	r:	*
	(1) generally becomes more slugg	gish	
	(2) usually has turbulent flows		8
	(3) generally is of higher velocity	, which is	marked by reduced turbulence
	(4) has lower discharges than do	upstream	portions
3.	Which of the following is not a fat	tty acid?	
	(1) Stearic acid	(2)	Palmitic acid
	(3) Oleic acid	(4)	Phenyl acetic acid
4.	Which of the following compound	ds is not ar	antibiotic?
	(1) Penicillin	(2)	Chloramine-T
	(3) Streptomycin	(4)	Chloramphenicol
5.			es in a straight line, according to the particle at a distance :
	(1) 0	(2)	$2 ax \cos x$
	$(3) 4 ax \cos x$	(4)	$2 ax \sin x$
RET/1	3/Test B/986	(2)	

6. If
$$\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} A \begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then the matrix A is:

$$(1) \begin{bmatrix} 3 & -4 \\ 3/4 & -1 \end{bmatrix}$$

(2)
$$\begin{bmatrix} -13/4 & 3/2 \\ 5/4 & -1/2 \end{bmatrix}$$

(3)
$$\begin{bmatrix} -17/4 & 3/4 \\ -7/4 & -1/4 \end{bmatrix}$$

$$(4) \begin{bmatrix} 5/4 & 11/4 \\ 3 & -9/4 \end{bmatrix}$$

7. If the error in the measurement of radius of sphere is 0.3%, then the percentage error in the measurement of its volume is:

(1) 0.15%

(2) 0.6%

(3) 0.9%

(4) 0.03%

8. The resistance of series combination of two resistances is S. When they are joined in parallel, the total resistance is P. If S = nP, then the minimum possible value of n is :

(1) 3

(2) 4

(3) 2.1

(4) 0.89

9. Mitochondria are associated with the function of:

(1) cellular digestion

(2) circulation

(3) protein synthesis

(4) cellular respiration

10. In which parts of eyes, rods and cones are present?

(1) Retina

(2) Iris

(3) Cornea

(4) Lens

RET/13/Test B/986

(3)

P. T. O.

11.	Poorly sorted sedim	nents occur in:		(4		
	(1) Fluvial environ	ment				
	(2) Beach environn	nent				
	(3) Dune					
	(4) Both fluvial and	l beach environmen	ts			
12.	Leptokurtic curves	suggest:				
	(1) River	(2) Desert	(3)	Lake	(4)	Ocean
13.	Effective settling sp	hericity is calculated	d by	the formula:		额
	(1) ri/R/N		0.804	L ² /SI	(4)	$\sum fd/x$
14.	Wacke-type of sand	stones posses:				
	(1) Grain supporte	d fabric	(2)	Matrix support	ed fa	abric
	(3) Unimodel fabri	c		Polymodel fabr		
15.	Dolomite crystals ca	an be identified on t	he b	asis of:		
	(1) High angle of r					
	(2) Low angle of rh					
	(3) High refractive					
	1 (r) 1 (m)	e rhomb and high re	efrac	tive index		
16.		ring is an infaunal bi				
	(1) Pecten			Lopha	(4)	Pteria
47		N (6)		5K • 66365K	(1 4 /3)(5)	
17.	shells are present?	lowing microfossil (grou	p both calcareo	us ar	nd agglutinated
14	(1) Foraminifers	(2) Calpionellids	(3)	Ostracodes	(4)	Pteropods
18.	Which of the follow	ing belongs to fodic	hnia	ichnofacies		
	(1) Asteriacites	(2) Diplocraterion		Chondrites	(4)	Diplichnites
19.	Which is the oldest	trilobite amongst th	e fol	lowing?		
	(1) Redlichia	(2) Phacops		Agnostus	(4)	Trinucleus
20.	In case of sea level r	ise with high sedim	ent I	lux, there will b	e:	
	(1) Aggradation	•	(2)			
	(3) Retrogradation		(4)	Transgression		ii
RET/1	3/Test B/986	(4)		8,000		

21.	Which of the following is the depositional sequence?	correct order of system tracts in a nor	mal
	(1) LST -TST- MFS- HST	(2) LST-HST-MFS-TST	
	(3) LST- MFS- TST-HST	(4) LST-TST-HST-MFS	
22.	The erosional unconformity is us (1) abrupt basinward shift of fac (2) subaerial exposure and erosic (3) sea level falls below the shelf (4) sea level does not fall below t	ies on break	
23.	The Anceps Bed belongs to:		
	(1) Patcham Formation	(2) Chari Formation	
	(3) Katrol Formation	(4) Umia Formation	
24.	Select from the following a Maast	richtian horizon:	
	(1) Ariyalur Group	(2) Spiti Shales	
	(3) Bagh Beds	(4) Umia Formation	
25.	Which of the following is not a co	Instituent of Vindhyan Basin?	
	(1) Kheinjua Formation	(2) Bijaigarh Shale	
	(3) Otoceras Bed	(4) Bleaching Shale	
26.	The measure of Rock Eval Pyrolys		
		generated through thermal cracking	
	(2) The amount of CO ₂ produced	during pyrolysis of Kerogen	12
	(3) Hydrozen Index		
	(4) The amount of free hydrocarb	oons in the Kerogen	
27.	Low energy coasts have productive	vity of organic matter ranging between:	
	(1) 0.5-5.0% (2) 0.1-1.0%		
28.	High input of terrestrial organic n	natter in sediment will result into:	
	(1) High content of liptinite mace	3 <u>3</u>	
	(2) High content of vitrinite mace	20	
	(3) High content of fluorinite		
	(4) High content of exsudatinite	at the state of th	*
RET/13	3/Test B/986	(5) P.T.	. O.

29.	(1) Large quantity(2) Large quantity(3) Large quantity(4) There is no gen	of light oil is gener of heavy oil is gene of methane is gene	erated rated	•	
30.	T _{max} > 450°C is sugget (1) Overmaturity of second (2) Immaturity of second (3) High concentration (4) High concentration	of source of source : source rock ation of oxygen in t		k	
31.	The age of Coal dep (1) Oligocene	oosits of Meghalaya (2) Miocene	a is: (3) Eocene	(4) Palaec	ocene
32.	Reef as a reservoir i	is associated prima	rily with:		
	(1) Carbonates	(2) Sandstone	(3) Mudstone	(4) Shale	
33.	Cannel coals are ric (1) Pollen & spore (3) Inertinite		(2) Vitrinite(4) Exsudatinite	×	Ħ
34.	In limestones ortho	chems with> 4 μm	crystals are known	as:	
	(1) Sparite	(2) Micrite	(3) Intraclast	(4) Oolite	
35.	A sandstone with> (1) Greywacke	15% matrix and >9 (2) Arkose	95% of quartz is nam (3) Quartzwacke		z arenite
36.	What term best de displacement?	escribes a surface	across which there		
	(1) joints	(2) fractures	(3) cracks	(4) faults	
37.	Plastic material what stress flows readily plastic material it was (1) Regain its shape (2) Only partly regain distorted (4) Only partly ren	y. After unloading vill e gain its shape ed or strained		point called t	he yield stress) a
RET/1	3/Test B/986	(6)			

38. What is a dip isogor	38.	What	is	a	dip	isogor	าร์
---------------------------------	-----	------	----	---	-----	--------	-----

- (1) lines joining equal limb dip on adjacent surfaces in a fold
- (2) average dip of a fold limb
- (3) average limb dip on the adjacent surfaces in a fold
- (4) average limb dips in a folded area
- 39. A homogeneous deformation involving either a plane strain or a general strain, in which lines of particles that are parallel to the principal axes of the strain ellipsoid have the same orientation before and after deformation is a
 - (1) Simple shear

- (2) Pure shear
- (3) A combination of (a) and (b) above (4) Homogenous shear
- **40.** Flexural flow folding occurs in
 - (1) Any homogeneous rock
- (2) Rocks with ductility contrast
- (3) Rocks with the same ductility
- (4) Any inhomogeneous rock

Attempt any five questions. Write answer in 150-200 words. Each question carries 16 marks. Answer each question on separate page, after writing Question Number.

- 1. A critical note on the greywacke problem.
- 2. A note on models of dolomitisation.
- 3. Types of sequence boundaries.
- 4. Describe the two concepts of palaeoecology.
- 5. Triassic stratigraphy of Spiti region.
- 6. A brief account of the outcrop sequence stratigraphy.
- 7. Contents of preservation of organic matters in sediments.
- 8. 1-D modeling in petroleum explorartion.
- 9. Discuss field evidences to identify faults.
- Discuss the stress ellipsoid and the strain ellipsoid with drawir gs. What is their 10. relationship?

RET/13/Test B/986

(7)

P. 1. O.

Roll No.:	 2	
The state of the s	7 7 17 A A A A A A A A A A A A A A A A A	

Roll 1	Vo.:	**************************************

Roll No.:			
Rott No. :	***************************************		
			- 38
	1(2)	¥0	

Roll No.:	

Q. No.

RET/13/Test B/986 (11) P.T.O.

Roll No. :	***************************************

FOR ROUGH WORK