Loyola College B.Sc. Statistics Nov 2008 Econometric Methods Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

BA 18

 

B.Sc. DEGREE EXAMINATION – STATISTICS

FIFTH SEMESTER – November 2008

ST 5405 – ECONOMETRIC METHODS

 

 

 

Date : 14-11-08                     Dept. No.                                        Max. : 100 Marks

Time : 9:00 – 12:00

            PART A

                                                                                                                                                                                                                                                                                                                                              

Answer ALL questions                                                                                                         (10 x 2 = 20)

 

  1. Define the term ‘Econometrics’.
  2. What is meant by Population regression line?
  3. Is the model Y = β1 + β2eX + u linear with respect to X? Why or why not?
  4. Interpret the following confidence interval.

                   Pr (-1.5 < β2 < 2.2) = 0.95, where β2 is the regression coefficient in a

      two variable linear model.

  1. Mention any two properties of OLS estimators.
  2. For a two variable linear model, the sample regression function is found to be Y = 1.7 + 4.5X + e. Interpret the regression equation.
  3. The observed and predicted values of the dependent variable Y in a linear model is as follows:

                  Observed Y:  14         12        20        14        11

                  Predicted Y:  11         10        18        13        14

      Find the value of R2.

  1. What is meant by multicollinearity?
  2. When are two regression equations said to be parallel and dissimilar?
  3. How is the ‘bench mark category’ interpreted in a regression model involving

      dummy independent variables?      

 

 

PART B

 

Answer any FIVE questions                                                                                                            (5 x 8 = 40)

 

  1. Explain the concept of ‘Population regression function’ through an example.
  2. Mention the assumptions underlying the classical linear regression model.
  3. Suppose that a researcher is studying the relationship between grade points on

     exam(Y) and hours studied for the exam(X) for a group of 20 students.   

     Analysis of the data reveals the following:

                 Sum of Y = 1600:      Sum of X = 400

                 Sum of xy = 1800;     sum of x2 = 600

Residual sum of squares = 43,200 where x and y are the deviations of X and Y from their respective means.

     Find the following:

  • Mean of X and Y
  • Least squares intercept and slope
  • Standard error of regression
  • Standard error of slope coefficient
  1. For a two variable linear model, derive the variance of the OLS estimators.
  2. Describe the method of testing the overall significance of a regression

             model.

  1. Find the residual sum of squares for the following data by assuming a linear

            model of Y on X.

.                       Y: 10          12                         15        17        13

                        X: 1.3         1.5            1.7       2.0       1.6.

  1. Explain the various remedial measures available to overcome the problem of multicollinearity. 

 

 

  1. Consider the following OLS regression results with standard errors in

parenthesis:

           S = 12,000 – 3000X1 + 8000(X1 + X2)          

                                  (1000)    (3000)                        n = 25

where S = annual salary of economists with B.A. or higher degree

           X1 = 1 if M.A. is highest degree; 0 otherwise

           X2 = 1 if Ph.D is highest degree; 0 otherwise

  • What is S for economists with a M.A. degree?
  • What is S for economists with a Ph.D degree?
  • What is the difference in S between M.A.’s and Ph.D’s?
  • At 5% level of significance, would you conclude that Ph.D’s earn more per year than M.A.’s?

 

PART C

 

Answer any TWO questions                                                                                                (2 x 20 = 40)

 

  1. Consider the following data on Y and X:

                 Y: 2.57    2.50    2.35    2.30    2.25    2.20    2.11    1.94

                 X: 0.77    0.74    0.72    0.73    0.76    0.75    1.08    1.81

      Fit a linear model of Y on X and test the hypothesis that the intercept and 

      slope coefficients are statistically significant at 5 % level.

 

  1. ) Explain the method of constructing a 100(1-α) % confidence interval for
    the slope parameter in a two variable regression model.

      b.) What is a ‘k’ variable linear model? Give an example for the same.

      c.) Explain the method of computing r2 based on a two variable linear model.

                                                                                                                                                           (10+4+6)

  1. a.)  Consider the following ANOVA table based on a linear regression:

                                           Source                 df        Sum of squares

                                           Regression           4          ?

                                           Residual              ?          128

                                           Total                    19        500

                     1.) Find the missing values.

                     2.) Compute the F-ratio and test the hypothesis that R2 is significantly

                          different from zero at 5 % level.

                     3.) Write the form of the PRF.

                     4.) Obtain an estimate for the variance of the disturbance term.

 

               b.) Consider the following results based on a linear regression:

                    The estimated regression line is

                                            = 53.428 + 0.895 X1 – 0.926 X2         R2 = 0.167

                                                   (11.462)  (0.607)       (0.607)           n = 16

                    where the numbers in the parenthesis denote the standard errors.

                    Does the above information reveal the presence of multicollinearity in the

                    sample data? Justify your answer.                                                                              (10+10)

 

  1. a.) Consider the following data on annual income (in 000’s $) categorized by gender and age.

                                      Income: 12         10       14     15        6       11       17

                                      Gender:  0            1          1      0         0         1         1

                                                 Age:  1            1          0      1         0         0         1

                   where Gender = 1 if male; 0 if female

                                   Age = 1 if less than or equal to 35; 0 if greater than 35

                      Perform a regression of Income on Gender and age. Interpret the results.

 

               b.) Define Heteroscedasticity. Explain the Spearman’s rank correlation test to detect the      

                     presence of   heteroscdasticity.                                                                                    (10 + 10)

 

Go To Main Page

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur