CBSE Curriculum for Senior School Certificate Examination (XI-XII) Mathematics 2018-19
MATHEMATICS CBSE | ||||||||||||||||||||||||||
(Code No. 041) | ||||||||||||||||||||||||||
Session-2018-19 | ||||||||||||||||||||||||||
XI-XII | ||||||||||||||||||||||||||
The Syllabus in the subject of Mathematics has undergone changes from time to time in | ||||||||||||||||||||||||||
accordance with growth of the subject and emerging needs of the society. Senior Secondary stage is a launching stage from where the students go either for higher academic education in Mathematics or for professional courses like Engineering, Physical and Bioscience, Commerce or Computer Applications. The present revised syllabus has been designed in accordance with National Curriculum Framework 2005 and as per guidelines given in Focus Group on Teaching of Mathematics 2005 which is to meet the emerging needs of all categories of students. Motivating the topics from real life situations and other subject areas, greater emphasis has been laid on application of various concepts. | ||||||||||||||||||||||||||
Objectives | ||||||||||||||||||||||||||
The broad objectives of teaching Mathematics at senior school stage intend to help the | ||||||||||||||||||||||||||
students: | ||||||||||||||||||||||||||
· to acquire knowledge and critical understanding, particularly by way of motivation | ||||||||||||||||||||||||||
and visualization, of basic concepts, terms, principles, symbols and mastery of underlying processes and skills. | ||||||||||||||||||||||||||
· to feel the flow of reasons while proving a result or solving a problem. | ||||||||||||||||||||||||||
· to apply the knowledge and skills acquired to solve problems and wherever possible, | ||||||||||||||||||||||||||
by more than one method. | ||||||||||||||||||||||||||
· to develop positive attitude to think, analyze and articulate logically. | ||||||||||||||||||||||||||
· to develop interest in the subject by participating in related competitions. | ||||||||||||||||||||||||||
· to acquaint students with different aspects of Mathematics used in daily life. | ||||||||||||||||||||||||||
· to develop an interest in students to study Mathematics as a discipline. | ||||||||||||||||||||||||||
· to develop awareness of the need for national integration, protection of environment, observance of small family norms, removal of social barriers, elimination of gender biases. | ||||||||||||||||||||||||||
· to develop reverence and respect towards great Mathematicians for their contributions to the field of Mathematics. | ||||||||||||||||||||||||||
CBSE COURSE STRUCTURE | ||||||||||||||||||||||||||
CLASS XI (2018-19) | ||||||||||||||||||||||||||
One Paper Total Period–240 [35 Minutes Each] | ||||||||||||||||||||||||||
Three Hours Max Marks: 100 | ||||||||||||||||||||||||||
No. | Units | No. of Periods | Marks | |||||||||||||||||||||||
I. | Sets and Functions | 60 | 29 | |||||||||||||||||||||||
II. | Algebra | 70 | 37 | |||||||||||||||||||||||
III. | Coordinate Geometry | 40 | 13 | |||||||||||||||||||||||
IV. | Calculus | 30 | 06 | |||||||||||||||||||||||
V. | Mathematical Reasoning | 10 | 03 | |||||||||||||||||||||||
VI. | Statistics and Probability | 30 | 12 | |||||||||||||||||||||||
Total | 240 | 100 | ||||||||||||||||||||||||
*No chapter/unit-wise weightage. Care to be taken to cover all the chapters. | ||||||||||||||||||||||||||
Unit-I: Sets and Functions | ||||||||||||||||||||||||||
1. Sets (20) Periods | ||||||||||||||||||||||||||
Sets and their representations. Empty set. Finite and Infinite sets. Equal sets. Subsets. Subsets of a set | ||||||||||||||||||||||||||
of real numbers especially intervals (with notations). Power set. Universal set. Venn diagrams. Union and Intersection of sets. Difference of sets. Complement of a set. Properties of Complement. | ||||||||||||||||||||||||||
2. Relations & Functions (20) Periods | ||||||||||||||||||||||||||
Ordered pairs. Cartesian product of sets. Number of elements in the Cartesian product of two finite | ||||||||||||||||||||||||||
sets. Cartesian product of the set of reals with itself (upto R x R x R). Definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special type of relation. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions. | ||||||||||||||||||||||||||
3. Trigonometric Functions (20) Periods | ||||||||||||||||||||||||||
Positive and negative angles. Measuring angles in radians and in degrees and conversion from one | ||||||||||||||||||||||||||
measure to another. Definition of trigonometric functions with the help of unit circle. Truth of the identity sin2x + cos2x = 1, for all x. Signs of trigonometric functions. Domain and range of trigonometric functions and their graphs. Expressing sin (x±y) and cos (x±y) in terms of sinx, siny, cosx | ||||||||||||||||||||||||||
& cosy and their simple applications. Deducing identities like the following: | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
( ) | ||||||||||||||||||||||||||
Identities related to sin2x, cos2x, tan2x, sin3x, cos3x and tan3x. General solution of | ||||||||||||||||||||||||||
trigonometric equations of the type siny = sina, cosy = cosa and tany = tana. | ||||||||||||||||||||||||||
Unit-II: Algebra | ||||||||||||||||||||||||||
1. Principle of Mathematical Induction (10) Periods | ||||||||||||||||||||||||||
Process of the proof by induction, motivating the application of the method by looking at natural | ||||||||||||||||||||||||||
numbers as the least inductive subset of real numbers. The principle of mathematical induction and simple applications. | ||||||||||||||||||||||||||
2. Complex Numbers and Quadratic Equations (15) Periods | ||||||||||||||||||||||||||
Need for complex numbers, especially √ , to be motivated by inability to solve some of the quardratic equations. Algebraic properties of complex numbers. Argand plane and polar | ||||||||||||||||||||||||||
representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations (with real coefficients) in the complex number system. Square root of a complex number. | ||||||||||||||||||||||||||
3. Linear Inequalities (15) Periods | ||||||||||||||||||||||||||
Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation | ||||||||||||||||||||||||||
on the number line. Graphical solution of linear inequalities in two variables. Graphical method of finding a solution of system of linear inequalities in two variables. | ||||||||||||||||||||||||||
4. Permutations and Combinations (10) Periods | ||||||||||||||||||||||||||
Fundamental principle of counting. Factorial n. (n!) Permutations and combinations, derivation of formulae for and and their connections, simple applications. | ||||||||||||||||||||||||||
5. Binomial Theorem (10) Periods | ||||||||||||||||||||||||||
History, statement and proof of the binomial theorem for positive integral indices. Pascal’s triangle, General and middle term in binomial expansion, simple applications. | ||||||||||||||||||||||||||
6. Sequence and Series (10) Periods | ||||||||||||||||||||||||||
Sequence and Series. Arithmetic Progression (A. P.). Arithmetic Mean (A.M.) Geometric Progression (G.P.), general term of a G.P., sum of n terms of a G.P., infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M. Formulae for the following special sums. | ||||||||||||||||||||||||||
∑ ∑ ∑ | ||||||||||||||||||||||||||
Unit-III: Coordinate Geometry | ||||||||||||||||||||||||||
1. Straight Lines (10) Periods | ||||||||||||||||||||||||||
Brief recall of two dimensional geometry from earlier classes. Shifting of origin. Slope of a line and | ||||||||||||||||||||||||||
angle between two lines. Various forms of equations of a line: parallel to axis, point -slope form, slope- intercept form, two-point form, intercept form and normal form. General equation of a line. Equation of family of lines passing through the point of intersection of two lines. Distance of a point from a line. | ||||||||||||||||||||||||||
2. Conic Sections (20) Periods | ||||||||||||||||||||||||||
Sections of a cone: circles, ellipse, parabola, hyperbola, a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle. | ||||||||||||||||||||||||||
3. Introduction to Three-dimensional Geometry (10) Periods | ||||||||||||||||||||||||||
Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between | ||||||||||||||||||||||||||
two points and section formula. | ||||||||||||||||||||||||||
Unit-IV: Calculus | ||||||||||||||||||||||||||
1. Limits and Derivatives (30) Periods | ||||||||||||||||||||||||||
Derivative introduced as rate of change both as that of distance function and geometrically. | ||||||||||||||||||||||||||
Intuitive idea of limit. Limits of polynomials and rational functions trigonometric, exponential and logarithmic functions. Definition of derivative relate it to scope of tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions. | ||||||||||||||||||||||||||
Unit-V: Mathematical Reasoning | ||||||||||||||||||||||||||
1. Mathematical Reasoning (10) Periods | ||||||||||||||||||||||||||
Mathematically acceptable statements. Connecting words/ phrases – consolidating the understanding of “if and only if (necessary and sufficient) condition”, “implies”, “and/or”, “implied by”, “and”, “or”, “there exists” and their use through variety of examples related to real life and Mathema tics. Validating the statements involving the connecting words, difference among contradiction, converse and contrapositive. | ||||||||||||||||||||||||||
Unit-VI: Statistics and Probability | ||||||||||||||||||||||||||
1. Statistics (15) Periods | ||||||||||||||||||||||||||
Measures of Dispersion: Range, Mean deviation, variance and standard deviation of ungrouped/grouped data. Analysis of frequency distributions with equal means but different variances. | ||||||||||||||||||||||||||
2. Probability (15) Periods | ||||||||||||||||||||||||||
Random experiments; outcomes, sample spaces (set representation). Events; occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with other theories of earlier classes. Probability of an event, probability of ‘not’, ‘and’ and ‘or’ events. | ||||||||||||||||||||||||||
MATHEMATICS (Code No. – 041) | ||||||||||||||||||||||||||
CBSE QUESTION PAPER DESIGN CLASS – XI (2018-19) | ||||||||||||||||||||||||||
Time : 3 Hours Max. Marks: 100 | ||||||||||||||||||||||||||
S. No. |
Typology of Questions | Very Short Answer (1 Marks) |
Short Answer (2 Marks) | Long Answer-I (4 marks) | Long Answer-II (6 marks) | Marks | % Weightage |
|||||||||||||||||||
1 | Remembering- (Knowledge based Simple recall questions, to know specific facts, terms, concepts, principles, or theories, Identify, define, or recite, information) | 2 | 2 | 2 | 1 | 20 | 20% | |||||||||||||||||||
2 | Understanding- (Comprehension -to be familiar with meaning and to understand conceptually, interpret, compare, contrast, explain, paraphrase information) | 1 | 3 | 4 | 2 | 35 | 35% | |||||||||||||||||||
3 | Application (Use abstract information in concrete situation, to apply knowledge to new situations, Use given content to interpret a situation, provide an example, or solve a problem) | 1 | – | 3 | 2 | 25 | 25% | |||||||||||||||||||
4 | High Order Thinking Skills ( Analysis & Synthesis- Classify, compare, contrast, or differentiate between different pieces of information, Organize and/or integrate unique pieces of information from a variety of sources) | – | 3 | 1 | – | 10 | 10% | |||||||||||||||||||
5 | Evaluation- (Appraise, judge, and/or justify the value or worth of a decision or outcome, or to predict outcomes based on values) | – | – | 1 | 1 | 10 | 10% | |||||||||||||||||||
TOTAL | 1 ´ 4 = 4 | 2 ´ 8 = 16 | 4 ´ 11 = 44 | 6 ´ 6 = 36 | 100 | 100% | ||||||||||||||||||||
QUESTION-WISE BREAK-UP | ||||||||||||||||||||||||||
Type of Question | Mark per Question | Total No. of Questions | Total Marks |
|||||||||||||||||||||||
VSA | 1 | 4 | 4 | |||||||||||||||||||||||
SA | 2 | 8 | 16 | |||||||||||||||||||||||
LA-I | 4 | 11 | 44 | |||||||||||||||||||||||
LA-II | 6 | 6 | 36 | |||||||||||||||||||||||
Total | 29 | 100 | ||||||||||||||||||||||||
1. No chapter wise weightage. Care to be taken to cover all the chapters. | ||||||||||||||||||||||||||
2. Suitable internal variations may be made for generating various templates keeping the overall weightage to different form of questions and typology of questions same. | ||||||||||||||||||||||||||
Choice(s): | ||||||||||||||||||||||||||
There will be no overall choice in the question paper. | ||||||||||||||||||||||||||
However, 30% internal choices will be given in 4 marks and 6 marks questions. | ||||||||||||||||||||||||||
CLASS-XII | ||||||||||||||||||||||||||
(2018-19) | ||||||||||||||||||||||||||
One Paper Time: 3 hrs. | ||||||||||||||||||||||||||
Max Marks. 100 | ||||||||||||||||||||||||||
Units | No. of Periods | Marks | ||||||||||||||||||||||||
I. | Relations and Functions | 30 | 10 | |||||||||||||||||||||||
II. | Algebra | 50 | 13 | |||||||||||||||||||||||
III. | Calculus | 80 | 44 | |||||||||||||||||||||||
IV. | Vectors and Three – Dimensional Geometry | 30 | 17 | |||||||||||||||||||||||
V. | Linear Programming | 20 | 06 | |||||||||||||||||||||||
VI. | Probability | 30 | 10 | |||||||||||||||||||||||
Total | 240 | 100 | ||||||||||||||||||||||||
Unit-I: Relations and Functions | ||||||||||||||||||||||||||
1. Relations and Functions 15 Periods | ||||||||||||||||||||||||||
Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and | ||||||||||||||||||||||||||
onto functions, composite functions, inverse of a function. Binary operations. | ||||||||||||||||||||||||||
2. Inverse Trigonometric Functions 15 Periods | ||||||||||||||||||||||||||
Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions. | ||||||||||||||||||||||||||
Unit-II: Algebra | ||||||||||||||||||||||||||
1. Matrices 25 Periods | ||||||||||||||||||||||||||
Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operation on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Non- commutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2).Concept of elementary row and column operations. Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices | ||||||||||||||||||||||||||
will have real entries). | ||||||||||||||||||||||||||
2. Determinants 25 Periods | ||||||||||||||||||||||||||
Determinant of a square matrix (up to 3 x 3 matrices), properties of determinants, minors, co- factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique | ||||||||||||||||||||||||||
solution) using inverse of a matrix. | ||||||||||||||||||||||||||
Unit-III: Calculus | ||||||||||||||||||||||||||
1. Continuity and Differentiability 20 Periods | ||||||||||||||||||||||||||
Continuity and differentiability, derivative of composite functions, chain rule, derivatives of | ||||||||||||||||||||||||||
inverse trigonometric functions, derivative of implicit functions. Concept of exponential and logarithmic functions. | ||||||||||||||||||||||||||
Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives. Rolle’s and Lagrange’s Mean Value Theorems (without proof) and their geometric interpretation. | ||||||||||||||||||||||||||
2. Applications of Derivatives 10 Periods | ||||||||||||||||||||||||||
Applications of derivatives: rate of change of bodies, increasing/decreasing functions, tangents and normals, use of derivatives in approximation, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate | ||||||||||||||||||||||||||
basic principles and understanding of the subject as well as real-life situations). | ||||||||||||||||||||||||||
3. Integrals 20 Periods | ||||||||||||||||||||||||||
Integration as inverse process of differentiation. Integration ofavariety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them. | ||||||||||||||||||||||||||
∫ ∫ | ||||||||||||||||||||||||||
∫ ∫ | ||||||||||||||||||||||||||
∫ | ||||||||||||||||||||||||||
√ | ||||||||||||||||||||||||||
√ | ||||||||||||||||||||||||||
√ | ||||||||||||||||||||||||||
∫ ∫ √ ∫ | ||||||||||||||||||||||||||
√ ∫ √ | ||||||||||||||||||||||||||
∫ √ ∫( ) √ | ||||||||||||||||||||||||||
Definite integrals as a limit of a sum, Fundamental Theorem of Calculus (without proof). Basic properties | ||||||||||||||||||||||||||
of definite integrals and evaluation of definite integrals. | ||||||||||||||||||||||||||
4. Applications of the Integrals 15 Periods | ||||||||||||||||||||||||||
Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only), Area between any of the two above said curves (the region should be clearly identifiable). | ||||||||||||||||||||||||||
5. Differential Equations 15 Periods | ||||||||||||||||||||||||||
Definition, order and degree, general and particular solutions of a differential equation. formation of differential equation whose general solution is given. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type: | ||||||||||||||||||||||||||
, where p and q are functions of x or constants. | ||||||||||||||||||||||||||
, where p and q are functions of y or constants. | ||||||||||||||||||||||||||
Unit-IV: Vectors and Three-Dimensional Geometry | ||||||||||||||||||||||||||
1. Vectors 15 Periods | ||||||||||||||||||||||||||
Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors, scalar triple product of vectors. | ||||||||||||||||||||||||||
2. Three – dimensional Geometry 15 Periods | ||||||||||||||||||||||||||
Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, coplanar and skew lines, shortest distance between two lines. Cartesian and vector equation of a plane. Angle between (i) two lines, (ii) two planes, (iii) a line and a plane. Distance of a point from a plane. | ||||||||||||||||||||||||||
Unit-V: LinearProgramming | ||||||||||||||||||||||||||
1. Linear Programming 20 Periods | ||||||||||||||||||||||||||
Introduction, related terminology such as constraints, objective function, optimization, different types of linear programming (L.P.) problems, mathematical formulation of L.P. problems, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial | ||||||||||||||||||||||||||
constraints). | ||||||||||||||||||||||||||
Unit-VI: Probability | ||||||||||||||||||||||||||
1. Probability 30 Periods | ||||||||||||||||||||||||||
Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes’ theorem, Random variable and its probability distribution, mean and variance of random variable. Repeated independent (Bernoulli) trials and Binomial distribution. | ||||||||||||||||||||||||||
Prescribed Books: | ||||||||||||||||||||||||||
1) Mathematics Textbook for Class XI, NCERT Publications | ||||||||||||||||||||||||||
2) Mathematics Part I – Textbook for Class XII, NCERT Publication | ||||||||||||||||||||||||||
3) Mathematics Part II – Textbook for Class XII, NCERT Publication | ||||||||||||||||||||||||||
4) Mathematics Exemplar Problem for Class XI, Published by NCERT | ||||||||||||||||||||||||||
5) Mathematics Exemplar Problem for Class XII, Published by NCERT | ||||||||||||||||||||||||||
MATHEMATICS (Code No. -041) | ||||||||||||||||||||||||||
QUESTION PAPER DESIGN CLASS – XII | ||||||||||||||||||||||||||
(2018 – 19) | ||||||||||||||||||||||||||
Time: 3 Hours Max. Marks: 100 | ||||||||||||||||||||||||||
S. No. |
Typology of Questions | Very Short Answer (1 Marks) |
Short Answer (2 Marks) | Long Answer 1 (4 marks) |
Long Answer II (6 marks) | Marks | % Weightage |
|||||||||||||||||||
1 | Remembering- (Knowledge based Simple recall questions, to know specific facts, terms, concepts, principles, or theories, Identify, define, or recite, information) | 2 | 2 | 2 | 1 | 20 | 20% | |||||||||||||||||||
2 | Understanding- (Comprehension -to be familiar with meaning and to understand conceptually, interpret, compare, contrast, explain, paraphrase information) | 1 | 3 | 4 | 2 | 35 | 35% | |||||||||||||||||||
3 | Application (Use abstract information in concrete situation, to apply knowledge to new situations, Use given content to interpret a situation, provide an example, or solve a problem) | 1 | – | 3 | 2 | 25 | 25% | |||||||||||||||||||
4 | High Order Thinking Skills ( Analysis & Synthesis- Classify, compare, contrast, or differentiate between different pieces of information, Organize and/or integrate unique pieces of information from a variety of sources) | – | 3 | 1 | – | 10 | 10% | |||||||||||||||||||
5 | Evaluation (Appraise, judge, and/or justify the value or worth of a decision or outcome, or to predict outcomes based on values) | – | – | 1 | 1 | 10 | 10% | |||||||||||||||||||
TOTAL | 1 ´ 4 = 4 | 2 ´ 8 = 16 | 4 ´ 11 = 44 | 6 ´ 6 = 36 | 100 | 100% | ||||||||||||||||||||
QUESTION WISE BREAK UP | ||||||||||||||||||||||||||
Type of Question | Mark per Question | Total No. of Questions | Total Marks |
|||||||||||||||||||||||
VSA | 1 | 4 | 4 | |||||||||||||||||||||||
SA | 2 | 8 | 16 | |||||||||||||||||||||||
LA-I | 4 | 11 | 44 | |||||||||||||||||||||||
LA-II | 6 | 6 | 36 | |||||||||||||||||||||||
Total | 29 | 100 | ||||||||||||||||||||||||
1. No chapter wise weightage. Care to be taken to cover all the chapters. | ||||||||||||||||||||||||||
2. Suitable internal variations may be made for generating various templates keeping the overall weightage to different form of questions and typology of questions same. | ||||||||||||||||||||||||||
Choice(s): | ||||||||||||||||||||||||||
There will be no overall choice in the question paper. | ||||||||||||||||||||||||||
However, 30% internal choices will be given in 4 marks and 6 marks questions. |
To see the full specifications with in-depth details click here
Latest Govt Job & Exam Updates: