Loyola College M.Sc. Mathematics April 2009 Probability Theory And Stochastic Processes Question Paper PDF Download

      LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – MATHEMATICS

YB 39

SECOND SEMESTER – April 2009

ST 2902 – PROBABILITY THEORY AND STOCHASTIC PROCESSES

 

 

 

Date & Time: 02/05/2009 / 1:00 – 4:00  Dept. No.                                                 Max. : 100 Marks

 

 

PART-A

Answer all questions                                                                                       (10 x 2 = 20)                       

  • Determine C such that, ∞ < x < ∞ is a pdf of a random variable X.
  • If the events A and B are independent show that and are independent.
  • Write the MGF of a Binomial distribution with parameters n and p. Hence or otherwise find
  • If two events A and B are such that , show that P(A) ≤ P(B)
  • Given the joint pdf of and, f(,) = 2, 0<<<1.obtain the conditional pdf of given .
  • Define a Markov process.
  • Define transcient state and recurrent state.
  • Suppose the customers arrive at a bank according to Poisson process with mean rate of 3 per minute. Find the probability of getting 4 customers in 2 minutes.
  • If has normal distribution N(25,4) and  has normal distribution N(30,9) and if  and  are independent find the distribution of 2 + 3.
  • Define a renewal process.

PART-B

Answer any five questions                                                          (5 x 8 = 40)

  • Derive the MGF of normal distribution.
  • Show that F (-∞) = 0, F (∞) = 1and F(x) is right continuous.
  • Show that binomial distribution tends to Poisson distribution under some conditions to be stated.
  • Let X and Y be random variables with joint pdf f(x,y) = x+y, 0<x<1, 0<y<1, zero elsewhere. Find the correlation coefficient between X and Y
  • Let {} be a Markov chain with states 1,2,3 and transition probability matrix

                                                       

              with, i = 1,2,3

              Find i)

  1.                 ii)

 

 

 

  • Obtain the expression for in a pure birth process.
  • State and prove Chapman-Kolmogorov equation on transition probability matrix.
  • Let X have a pdf f(x) = e-xxm-1, 0 < x < ∞ and Y be another independent random variable with pdf g(y) = e-y yn-1,

     0 < y < ∞ .obtain the pdf of U= .

PART-C

Answer any two questions                                                        (2 x 20 = 40)

  • . a) State and prove Bayes theorem.
  1. b) Suppose all n men at a party throw their hats in the centre of the room.        

             Each man then randomly selects a hat. Find the probability that none of  them will

             get their own hat.                                          (10 + 10)

  • a) let {} be an increasing sequence of events. Show that

          P(lim ) = limP(). Deduce the result for decreasing events.

  1. b) Each of four persons fires one shot at a target. let Ai , i = 1,2,3,4 denote         

          the event that the target is hit by person i.  If Ai are independent and

          P() = P() = 0.7, P() =0.9, P() = 0.4. Compute the probability that

  1. All of them hit the target
  2. Exactly one hit the target
  3. no one hits the target
  4. atleast one hits the target. (12 + 8)
  • . a) Derive the expression for in a Poisson process.
  1. b) If and  have independent Poisson process with parameters  and.

           Obtain the distribution of  = γ given  +  = n.

  1. c) Explain Yules’s process.                                            (10 + 5 + 5)

22). a) verify whether the following Markov chain is irreducible, aperiodic and                   

            recurrent

                       

           Obtain the stationary transition probabilities.

  1. b) State the postulates and derive the Kolmogorov forward differential                       

              equations for a birth and death process.                            (10 +10)

 

 

Go To Main page

                 

 

 

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur