Loyola College M.Sc. Physics April 2003 Mathematical Physics Question Paper PDF Download

 

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034.

M.Sc. DEGREE EXAMINATION – PHYSICS

SECOND SEMESTER – APRIL 2003

PH 2803 / PH 825  –  MATHEMATICAL PHYSICS

 

28.04.2003

1.00 – 4.00                                                                                                      Max : 100 Marks

                                                                PART – A                                       (10´ 2=20 marks)

      Answer ALL questions.

 

  1. Starting from the general equation of a circle in the xy plane A (x2 +y2) + Bx + Cy +D=0 arrive at the z z* representation for a circle.
  2. State Liouville’s theorem.
  3. Develop Laurent series of about z = -2.
  4. Write the Jacobian of the transformation .
  5. Show that the Dirac delta function .
  6. State convolution theorem.
  7. Solve the differential equation + .
  8. Obtain the orthonormalising constant for the series in the interval     (-L, L).
  9. Evaluate using the knowledge of Gamma function.
  10. Generate L2 (x) and L3 (x) using Rodrigue’s formula for laugerre

 

 

 

                                                                PART – B                                      (4´ 7.5=30 marks)

      Answer any FOUR.

 

  1. Obtain Cauchy Rieman equations from first principles of calculus of complex numbers.
  2. Determine a function which maps the indicated region of w plane on to the upper half of the z – plane

v                                                                           y

w plane                                                                    z plane

p                              T

 

Q                      s         u                     p1            Q1                 S1       T1         X

-b                     +b                                                 -1                 +1

  1. Develop half-range Fourier sine series for the function f (x) = x ; 0 < x < 2. Use the results to develop the series .
  2. Verify that the system y11 + ; y1(0) = 0 and y (1) = 0 is a Sturm-Liouville System. Find the eigen values and eigen functions of the system and hence form a orthnormal set of functions.
  3. (a) If f (x) = obtain Parseval’s Identity
    where  Pk (x) stands for Legendre polynomials.
  • Prove that  (x) = 2n – 1 Hn (x) where Hn (x) stands for Hermite polynomials.(4+3.5)

 

 

                                                               PART – C                                      (4´12.5=50 marks)

Answer any FOUR.

 

  1. Show that u (x, y) = Sin x Coshy + 2 Cos x Sinhy + x2 +4 xy – y2 is harmonic Construct f (z) such that u  + iv is analytic.
  2. (a)  Evaluate  using contour integration.

(b)  Using suitable theorems evaluate  c : .                                  (7+5.5)

  1. (a) The current i and the charge q in a series circuit containing an inductance L and
    capacitance C and emf E satisfy the equations L  and i = . Using
    Laplace Transforms solve the equation and express i interms of circuit parameters.
  • Find , where L-1 stands for inverse Laplace transform.                 (3.5)
  1. Solve the boundary value problem . with Y (0, t) = 0; yx (L, t) = 0
    y (x, 0) = f (x) ;  yt (x, 0)  = 0  and  and Interpret physically.
  2. Solve Bessels differential equation using Froebenius power series method.

 

 

 

 

Go To Main page

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur