Loyola College M.Sc. Statistics April 2011 Estimation Theory Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

SECOND SEMESTER – APRIL 2011

ST 2811 / 2808 – ESTIMATION THEORY

 

 

 

Date : 2/4/2011                Dept. No.                                        Max. : 100 Marks

Time : 1:00 – 4:00

 

SECTION – A

 

Answer all the questions                                                                                           (2×10=20)

  1. Define Minimal Sufficient Statistic
  2. Define Efficient Estimator
  3. Define Ancillary Statistic
  4. State the different approaches to identify UMVUE
  5. Define Likelihood Equivalence
  6. Define D –optimality
  7. Define Location-Scale Family
  8. Define Minimum Risk Equivariant Estimator(MREE)
  9. Define CAN estimator
  10. Define Maximum Likelihood Estimator

 

SECTION – B

 

Answer any five questions                                                                                        (5×8 = 40)

  1. Obtain UMVUE of θ(1- θ) using a random sample of size n drawn from a Bernoullie population with parameter θ
  2. State and Establish Rao-Blackwell theorem
  3. State and Establish Neyman-Fisher Factorization theorem
  4. i) Let L be squared error then MREE of θ is unique                                        (4)
  5. ii) Let X1,X2,…,Xn be a random sample from N(θ,1), Show that (4)
  6. Let δ be a LEE and L be invariant then show that    i)The Bias of δ is free from θ

and ii) Risk of δ is free from θ                                                                                    (4+4)

  1. i) State and Establish Basu’s theorem (6+2)
  2. ii) Define UMRUE
  3. Determine MREE of θ in the following cases i) N(θ,1) , θ Î R ii)E(θ,1) , θ ÎR

 

 

 

  1. Let X1,X2,…,Xn be a random sample from population having pdf

 

obtain MLE of P(X>2)

 

SECTION – C

Answer any two questions                                                                                        (2×20 = 40)

  1. i) Establish: If UMVUE exists for a parametric function Ψ(θ), It has to be essentially unique (10)
  2. ii) State and Establish Cramer-Rao Inequality for multi-parameter case and hence deduce the inequality for single parameter (10)
  3. Establish: δ*Î Ug is D-optimal if and only if each component of δ* is UMVUE
  4. i) Let X1,X2,…,Xn be a random sample from N(µ,σ2). Obtain Cramer-Rao lower bound for estimating (16)
  5. i) µ ii) σ2                 iii) µ+σ                                 iv) σ/ µ
  6. ii) Establish: Let T be a sufficient statistic such that T(x) = T(y) then           (4)
  7. i) Establish: Let δ* belong to the class of LEEs. Then δ* is a MREE with respect to squared error if and

only if E(δ*u)=0                                                                                           (10)

  1. ii) Let X1,X2,…,Xn be a random sample drawn from a normal population with mean θ and variance σ2

Find the MLE of θ and σ2 when both θ and σ2 are unknown                                (10)

 

 

Go To Main Page

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur