Loyola College M.Sc. Mathematics April 2003 Mechanies – II Question Paper PDF Download

LOYOLA  COLLEGE (AUTONOMOUS), CHENNAI-600 034.

M.Sc. DEGREE  EXAMINATION  – mathematics

FourTh SEMESTER  – APRIL 2003

MT  4801/ M  1026   mechanies II

16.04.2003

1.00 – 4.00                                                                                             Max: 100 Marks

 

Answer ALL the questions

 

  1. a)  Explain the term ‘ABERRATION’.  Also derive the relativistic formula

 

for aberration in the form      (8)

(OR)

 

  1. Show that the operator  is an invariant for

Lorentz  transformation.                                                                       (8)

 

  1. a)   State ‘ETHER’ Hypothesis.  Explain the  Michelson- Morley experiment

and give the conclusion.                                                                         (17)

 

(OR)

  1. b) Show that Lorentz  transformations forma group      .                            (17)

 

  1. a) Obtain the transformation formula for mass in the form (8)

(OR)

 

  1. If a body of mass m disintegrates while at rest in to two parts of rest masses m1 and m2, show that the energies E1 and E2   of the parts are

given by       (17)

 

  1. a) Derive the equation E = m C2, Deduce that p2 – is an invariant under

Lorentz  transformation.                                                                      (17)

 

 

 

 

 

 

 

 

 

 

 

 

 

(OR)

  1. Obtain the transformation formula  for force components in the

(17)

 

 

 

  1. a)    Explain ‘contravariant vectors’,   covariant vectors,

‘contravariant tensors’  and ‘covariant tensors’.                                   (8)

 

(OR)

  1. If a vector has components, on cartesion coordinates then

the components in polar coordinates are and if the components be

then the polar coordinates  components are         (8)

 

  1. a)      Define fundamental tensors and show that gmg is a Covariant  tensor of

rank two. Also transform ds2 = dx2 + dy2 + dz2 in polar and cylindrical

coordinates.                                                                                            (17)

 

(OR)

  1. b) Define Christoffel’s 3-index symbols of the first and second kind.  Also

calculate christoffel’s symbols corresponding to the metric

ds2 = dr2 + r2dq2 + r2sin2q df2.                                                                (17)

 

  1. a) Define ‘Energy Tensor’.  Show that the equationfor m = 4

gives the equation of continuity in Hydrodynamics.                                  (8)

 

 

 

 

 

 

 

 

 

(OR)

  1. Obtain isotropic polar coordinates and Cartesian coordinates.

Also Deduce that the velocity of light at distance r1 from the origin is

 

(8)

 

  1. a) Obtain the schwarzchild  line element in the neighbourhood of  an attracting particle

 

in the from       (17)

 

(OR)

  1. b)     Derive the differential equation to the planetary orbits in the

 

form  .                                    (17)

 

 

Go To Main page

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur