Loyola College M.A. Economics April 2007 Maths & Statistics For Economists Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

RF 29

M.A. DEGREE EXAMINATION – ECONOMICS

FIRST SEMESTER – APRIL 2007

EC 1809 – MATHS & STATISTICS FOR ECONOMISTS

 

 

 

Date & Time: 30/04/2007 / 1:00 – 4:00      Dept. No.                                       Max. : 100 Marks

 

 

Part  – A

 

Answer any FIVE questions in about 75 words each.                   (5 x 4 = 20 marks)

 

  1. Distinguish between partial and multiple correlation.
  2. Define ‘Multiple Regression’.
  3. Distinguish between secular trend and seasonal variation.
  4. Define ‘derivative’.
  5. State the conditions for maxima and minima in y = f(x)
  6. Define the distribution which explains improbable events.
  7. Find , if (i) (ii)

 

Part – B

 

Answer any FOUR questions in about 300 words each.               (4 x 10 = 40 marks)

  1. State the properties of determinants.
  2. Find the output vector from the following input coefficient matrix and final demand vector
  3. Calculate Karl Pearson’s coefficient of correlation

X:     6       8          12        15        18        20        24        28        31

Y:    10      12        15        15        18        25        22        26        28

  1. Fit a straight line regression from the following data:

X:     0       1          2          3          4          5          6

Y:     2       1          3          2          4          3          5

  1. Define limit and continuity. Determine the right side limit and left side limit of the following functions and discuss the types of discontinuity.

(i) ,   (ii)

  1. Evaluate the following derivatives:

(i)                (ii)             (iii) ,

(iv)         (v)

  1. Discuss the conditions of maxima and minima and saddle point form the function Z = f(x,y).

 

 

 

 

 

 

Part – C

 

Answer any TWO questions in about 900 words each.                 (2 x 20 = 40 marks)

  1. Derive the properties (Characteristics) of Cobb Douglas production function.
  2. Discuss the rules of differentiation with examples.
  3. Fit a Poison distribution to the following data:

No of mistakes per page:              0          1          2          3          4          5

No of pages:                                  40        30        20        15        10        5

  1. A normal distribution was fitted to the distribution of new business brought by 100 insurance agents with following results:
New business (in ‘000 Rs) 10-20 20-30 30-40 40-50 50-60
Observed frequency 10 20 33 22 15
Expected frequency 9 22 32 25 12

Test the goodness of fit.

 

 

Go To Main page

 

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur