Loyola College M.A. Economics April 2008 Statistics For Economists Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

NO 49

M.A. DEGREE EXAMINATION – ECONOMICS

THIRD & FIRST SEMESTER – APRIL 2008

    ST 3902 / 1900 – STATISTICS FOR  ECONOMISTS

 

 

 

Date : 05/05/2008            Dept. No.                                        Max. : 100 Marks

Time : 9:00 – 12:00

SECTIONA                  (10 X 2 = 20 Marks)

Answer all the Questions:

 

  1. Briefly explain the limitations of Statistics in Economic Analysis.
  2. Define the terms ‘Range ’ and ‘Standard Deviation’
  3. In a distribution, the mean is 65, median is 70, Coefficient of Skewness is -0.6

Find mode and Coefficient of Variation.

  1. State the merits and demerits of rank correlation.
  2. Give any two applications of discrete distributions in Economics.
  3. State any four properties of Normal distribution.
  4. Briefly explain the terms positive and negative correlation.
  5. What is meant by Test of Adequacy?
  6. When do you go for Transportation Problem? Give an example.
  7. What is the objective of an Assignment Model?

 

SECTION-B                  (5 X 8 = 40 Marks)

 

Answer any five Questions:

 

11.The frequency distribution of income in a certain factory is as  follows.   Calculate Bowley’

skewness from the following data:

 

Income ( Rs in 100):   0-100  100-200    200-300  300-400     400-500      500-600

No. of Persons        :     8              17               58         47             22            8

 

12.Discuss in detail how trend analysis plays an important role in Economic.

 

13.Show that the Fisher’s Index satisfies both time reversal test and factor

reversal test.

 

  1. Explain in detail the construction of Cost of living Index numbers.

 

  1. State Addition and Multiplication Theorem on Probability with an example.

 

  1. Calculate the rank coefficient of correlation between X and Y from the following data:

 

X:    10      35        43        51        73        85        10

Y :    23      62        38        10        14        16        20

 

 

 

 

  1. When do we go for Chi-square Test ? Illustrate with an example.

 

  1. Discuss in detail, the applications of LPP in Economics.

 

SECTION-C                 (2 X 20= 40 Marks)

 

Answer any Two Questions:

 

19 The following data represents the daily wages of an automobile industry.

Find   ß1,   ß2  from  the following data and comment on the results.

 

Daily Wages   :    0-20        20-30      30-40    40-50       50-60      60-70        70-80

No.of workers :     12              35           58        72           49           34              17

 

 

  1. Calculate the coefficient of correlation between X and Y for the

following and obtain the two regression lines.

 

X:        1          3          4          5          7          8          10

Y:        2          6          8          10        14        16        20

 

 

21a. Explain in detail the various steps involved in solving a Transportation problem.

 

21b. Construct a Transportation problem using three origin and three destinations and find the optimal

solution.

 

  1. Write short notes on the following:

 

  1. Kurtosis
  2. Standard Error
  3. Assignment Problem
  4. Conditional probability

 

 

Go To Main page

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loyola College M.A. Economics Nov 2008 Statistics For Economists Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

BA 29

M.A. DEGREE EXAMINATION – ECONOMICS

THIRD SEMESTER – November 2008

    ST 3902 – STATISTICS FOR  ECONOMISTS

 

 

 

Date : 14-11-08                 Dept. No.                                        Max. : 100 Marks

Time : 9:00 – 12:00

SECTIONA                                         (10 X 2 = 20 Marks)

 

Answer all the Questions:

 

  1. Give any two industrial applications of
  2. When will you go in for Median? Give an example.
  3. Briefly explain the term Positive Skewness.
  4. If the two regression lines are x +2y = 5 and 2x+3y = 8. Calculate the means and the regression coefficients.
  5. What do you understand by the term Continuous random variable? Give an example.
  6. What are the properties of Poisson distribution?
  7. Briefly explain the term Business Cycle.
  8. Define the following terms with examples.
  9. Critical Region. b.  Level of Significance.
  10. State the addition Theorem and give an example.
  11. Briefly explain the objective of an Assignment Problem.

 

SECTION-B                                      (5 X 8 = 40 Marks)

 

Answer any FIVE Questions:

 

  1. The following data relate to the profits (in Million $) of 1000 companies:

 

      Sales:             :      100 – 120   120-140  140-160  160-180  180-200 200-220  220-240

      No of Companies:  17                 53        199           194             327      208      2

       Calculate Bowley’s coefficient of skewness.

 

 

  1. Explain in detail the various steps in the construction of Cost of living Index   

 numbers.

 

  1. The following table gives age X  in years of Ford cars and Annual Maintenance Cost   

            Y  (in hundred $)

            Age          :      1                3                5             7             9

            Main.Cost:     15               18             21          23           22

            Plot the given data and the trend line.

 

  1. Explain the Characteristics of the Chi-Square distribution and state the various   

applications of this distribution.

 

  1. Explain in detail the ratio-to-trend method to calculate the seasonal indices.
  2. From the following data Calculate the Rank coefficient of correlation.         

            X   :  40    50    60   70    80    90 100  120  90  60

       Y   :  185  167  132  82   38   12   34    56   54  78

 

  1. A manufacturer of flat TV knows that 2% of his products are defective. If he sells the TV   in boxes of 100  and guarantees not more than 4 defectives, What is the probability that a  box will fail to meet the  guaranteed quality?    ( e –2 = 0.13534)

 

  1. State BAYE’S theorem and give a suitable example.

 

 

 

 

SECTION-C                                                  (2 X 20= 40 Marks)

 

 

Answer any TWO Questions:

 

  1. a. The following data relate to the life  (in hours) of 2 companies:

 

                Suriya:  87  45  69  38  60  58  40  60  78  98 

                Philips: 17  53  99  19  74  67   80 77  32  28       

 

       Which company you would  like to purchase? and comment on the results.                        (10-Marks)

  1. Fit a straight line to the following data:

      

Year      :1995  1996  1997  1998   1999   2000  2001    2002   2003   2004    2005

Sales    :   250    592   672     824      569    968    1205   1464   1758  2058    1566

(in Million $)                Estimate the sales for 2009.                                                            (10-Marks)

 

20 a. In a certain sample of 2000 families from UK, 1400 families consume of tea. Out of 1800 Indian  

        families, 1236 families consume tea. Use Chi-Square test to test whether tea consumption is

        independent of the families.

   (Use Chi-Square table value = 3.841,  at 5% level)                                                                (12–Marks)

 

  1. Distinguish between small sample tests and large sample tests with suitable illustrations. (8-Marks)

 

  1. a) Nokia started producing cell phones at different parts of the world and supplying for the whole

         world. Construct a Transportation model.                                                                            (5 Marks)

 

  1. Explain in detail all the steps involved in solving a transportation model to find the optimal solotion.

 ( 15-Marks)

  1. Write shot notes on the following:
  2. a) Kurtosis
  3. b) Components of Time series
  4. c) Time reversal test

d)Assignment problem                                                                                  ( 4X 5 = 20 Marks)

 

 

 

Go To Main Page

 

 

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur